Analysis I, Fall 2017

Solutions to Problem Set 1

5. Write $f \circ g=u+i v, g=u_{1}+i v_{1}$, and $f=u_{2}+i v_{2}$. Then

$$
\frac{\partial(f \circ g)}{\partial z}=\frac{1}{2}\left[\left(u_{x}+v_{y}\right)+i\left(v_{x}-u_{y}\right)\right] .
$$

The chain rule for partial derivatives (thinking of f and g as maps from \mathbf{R}^{2} to \mathbf{R}^{2}) gives

$$
\left[\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right]=\left[\begin{array}{ll}
u_{2 x} & u_{2 y} \\
v_{2 x} & v_{2 y}
\end{array}\right]\left[\begin{array}{ll}
u_{1 x} & u_{1 y} \\
v_{1 x} & v_{1 y}
\end{array}\right]
$$

So

$$
\begin{aligned}
\frac{\partial(f \circ g)}{\partial z}= & \frac{1}{2}\left[\left(u_{2 x} u_{1 x}+u_{2 y} v_{1 x}+v_{2 x} u_{1 y}+v_{2 y} v_{1 y}\right)+i\left(v_{2 x} u_{1 x}+v_{2 y} v_{1 x}-u_{2 x} u_{1 y}-u_{2 y} v_{1 y}\right)\right] \\
= & \frac{1}{4}\left[\left(u_{2 x}+v_{2 y}+i\left(v_{2 x}-u_{2 y}\right)\right)\left(u_{1 x}+v_{1 y}+i\left(v_{1 x}-u_{1 y}\right)\right)+\right. \\
& \left.\quad\left(u_{2 x}-v_{2 y}+i\left(v_{2 x}+u_{2 y}\right)\right)\left(u_{1 x}-v_{1 y}+i\left(-v_{1 x}-u_{1 y}\right)\right)\right] \\
= & \frac{\partial f}{\partial z} \frac{\partial g}{\partial z}+\frac{\partial f}{\partial \bar{z}} \frac{\partial \bar{g}}{\partial z}
\end{aligned}
$$

6. (a) Write $f=u+i v$. Since u is constant on $U, u_{x}=u_{y}=0$. So by CauchyRiemann equations $v_{x}=v_{y}=0$, so $f^{\prime}=0$, so f is a constant.
(b) Assume $|f|=c$ on U. If $c=0$, then $f=0$ on U. Assume $c \neq 0$. Then $f \bar{f}=c^{2}$. Taking $\frac{\partial}{\partial z}$ we get

$$
\frac{\partial f}{\partial z} \bar{f}+f \frac{\partial \bar{f}}{\partial z}=0 .
$$

But $\frac{\partial \bar{f}}{\partial z}=\frac{\overline{\partial f}}{\partial \bar{z}}$. Since f is holomorphic, $\frac{\partial f}{\partial \bar{z}}=0$, so $\frac{\partial \bar{f}}{\partial z}=0$. Therefore, $\frac{\partial f}{\partial z} \bar{f}=0$. Since we are assuming $c \neq 0, \bar{f} \neq 0$, so $\frac{\partial f}{\partial z}=0$ on U. Again since f is holomorphic $f^{\prime}=\frac{\partial f}{\partial z}=0$ on U, so f is constant on U.
7. This follows from the proof of Lucas' Theorem. Let z_{1}, \ldots, z_{n} be the roots of f and w a root of f^{\prime}, so

$$
f=a_{n}\left(z-z_{1}\right) \ldots\left(z-z_{n}\right) .
$$

If $f(w)=0$, then w is a repeated root of f, and we are done. Otherwise, assume $f(w) \neq 0$, and write

$$
\begin{equation*}
0=\frac{f^{\prime}(w)}{f(w)}=\sum_{i=1}^{n} a_{n} \frac{1}{w-z_{i}} \tag{1}
\end{equation*}
$$

Let L be the line formed by the boundary of $\Delta(f)$ which contains w. Then there is half-plane formed by L which contains all the roots of f. Assume the equation of that half-plane is

$$
\left\{z: \operatorname{Im}\left((w-z) e^{-i \theta}\right) \geq 0\right\}
$$

Then equation of the line is $\left\{z: \operatorname{Im}\left((z-w) e^{-i \theta}\right)=0\right\}$. If all the roots of f lie on L, then we are done. Otherwise, there is z_{i} such that $\operatorname{Im}\left(\left(w-z_{i}\right) e^{-i \theta}\right)>0$, so $\operatorname{Im}\left(\frac{e^{i \theta}}{w-z_{j}}\right)<0$. Multiplying both sides of Equation 1 by $e^{i \theta}$ we get a contradiction since the imaginary part of each term would be non-positive, and the imaginary part of at least one term is strictly negative.
8. First Assume B is a finite number. Then for every $\epsilon>0$, there is N such that for $n \geq N, B-\epsilon \leq\left|\frac{a_{n}}{a_{n+1}}\right| \leq B+\epsilon$. Therefore for every $k \geq N$

$$
(B-\epsilon)^{k-N} \leq\left|\frac{a_{N}}{a_{k}}\right| \leq(B+\epsilon)^{k-N} .
$$

So

$$
\frac{\left|a_{N}\right|}{(B+\epsilon)^{k-N}} \leq\left|a_{k}\right| \leq \frac{\left|a_{N}\right|}{(B-\epsilon)^{k-N}} .
$$

Therefore for every $k \geq N$

$$
\frac{\left|a_{N}\right|^{\frac{1}{k}}}{(B+\epsilon)^{1-\frac{N}{k}}} \leq\left|a_{k}\right|^{\frac{1}{k}} \leq \frac{\left|a_{N}\right|^{\frac{1}{k}}}{(B-\epsilon)^{1-\frac{N}{k}}} .
$$

So

$$
\frac{1}{B-\epsilon} \leq \limsup _{k \rightarrow \infty}\left|a_{k}\right|^{\frac{1}{k}} \leq \frac{1}{B+\epsilon} .
$$

Letting ϵ go to zero, we get $\lim _{\sup _{k \rightarrow \infty}}\left|a_{k}\right|^{\frac{1}{k}}=\frac{1}{B}$.
Similarly if $B=\infty$, then for every $M>0$, there is N such that for $n \geq N$, $\left|\frac{a_{n}}{a_{n+1}}\right| \geq M$. So for every $k \geq N$,

$$
\left|\frac{a_{N}}{a_{k}}\right| \geq M^{k-N}
$$

So for every $k \geq N$,

$$
\left|a_{k}\right|^{\frac{1}{k}} \leq \frac{\left|a_{N}\right|^{\frac{1}{k}}}{M^{1-\frac{1}{k}}}
$$

Therefore,

$$
\limsup _{k \rightarrow \infty}\left|a_{k}\right|^{\frac{1}{k}} \leq \frac{1}{M},
$$

so $\lim \sup _{k \rightarrow \infty}\left|a_{k}\right|^{\frac{1}{k}}=0$.

