Complex Analysis, Fall 2017

Solutions to Problem Set 10

1. (a) We need to show that for every $\epsilon>0$, there is δ such that for every r with $0 \leq 1-r<\delta$ and every $z \in S^{1},\left|g(z)-g_{r}(z)\right|<\epsilon$. Since g is continuous on $\overline{\mathbf{D}}$, and $\overline{\mathbf{D}}$ is compact, f is uniformly continuous on $\overline{\mathbf{D}}$. So for every $\epsilon>0$, there is δ, such that if $\left|z-z^{\prime}\right|<\delta$ and $z, z^{\prime} \in \overline{\mathbf{D}}$, then $\left|g(z)-g\left(z^{\prime}\right)\right|<\epsilon$. So if $0 \leq 1-r<\delta$, and $z=e^{i \theta} \in S^{1}$, then $|z-r z|=1-r<\delta$, and so $\left|g(z)-g_{r}(z)\right|=|g(z)-g(r z)|<\epsilon$.
(b) By Hw 9, Question 7,

$$
P_{r}(\theta-\phi)=1+\sum_{n=1}^{\infty} r^{n}\left(e^{i n(\theta-\phi)}+e^{-i n(\theta-\phi)}\right)
$$

and it follows from the solution that for a fixed r this series is uniformly convergent for $\theta-\phi \in \mathbf{R}$ (since the geometric series is uniformly convergent on a circle of radius $r<1$.) Therefore if we let $a_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i \theta}\right) d \theta$, then

$$
\begin{aligned}
\tilde{f}_{r}(z)=\tilde{f}\left(r e^{i \phi}\right) & =a_{0}+\sum_{n=1}^{\infty} \frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i \theta}\right) r^{n}\left(e^{i n(\theta-\phi)}+e^{-i n(\theta-\phi)}\right) d \theta \\
& =a_{0}+\sum_{n=1}^{\infty}\left(r e^{i \phi}\right)^{n}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i \theta}\right) e^{-i n \theta} d \theta\right)+\left(r e^{-i \phi}\right)^{n}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i \theta}\right) e^{i n \theta} d \theta\right)
\end{aligned}
$$

So if we let $a_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i \theta}\right) e^{-i n \theta} d \theta$ for $n \geq 0$ and $b_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i \theta}\right) e^{i n \theta} d \theta$ for $n \geq 1$, then

$$
\tilde{f}_{r}(z)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \bar{z}^{n}+b_{n} z^{n}\right)
$$

and therefore if $p_{n}(z, \bar{z})=1+\sum_{j=1}^{n} a_{j} \bar{z}^{j}+\sum_{j=1}^{\infty} b_{j} z^{j}$, we see that $p_{n}(z, \bar{z}) \rightarrow \tilde{f}_{r}(z)$ uniformly for $z \in S^{1}$. Note that p_{n} is independent of r.
(c) It is easy to see now that $p_{n}(z, \bar{z}) \rightarrow f(z)$ uniformly: if $\epsilon>0$ is given, there is δ such that for $0<1-r<\delta$, and $z \in S^{1},\left|f(z)-\tilde{f}_{r}(z)\right|<\epsilon / 2$. Pick such a r. Then there is N such that for $n \geq N,\left|p_{n}(z, \bar{z})-\tilde{f}_{r}(z)\right|<\epsilon / 2$ for every $z \in S^{1}$. So $\left|f(z)-p_{n}(z, \bar{z})\right|<\epsilon$ for all $z \in S^{1}$.
2. (a) Let f be a linear fractional transformation which sends the unit disk to the upper half plane (and therefore the unit circle to the real line). One such linear function is $f(z)=\frac{z-1}{i z+i}$. This functions sends the upper half circle to the positive side of the real line and the lower half circle to the negative side. The function $u=\frac{\arg z}{\pi}$ $-\pi / 2 \leq \arg z<3 \pi / 2$ is harmonic on $\mathbf{C} \backslash\left\{i \mathbf{R}_{\leq 0}\right\}$. It is piece-wise continuous on the real line, and has value 0 on the positive part and 1 on the negative side. Since the composition of a holomorphic function with a harmonic function is harmonic, $u \circ f$ is harmonic on the unit disk, and takes value 0 on the upper half circle and 1 on the lower one. Therefore $1-u \circ f=1-\frac{1}{\pi} \arg \left(\frac{z-1}{i z+i}\right)$ is the desired harmonic function.
(b) This is done similar to part (a). First notice that the function $f(z)=z^{2}$ sends the first quadrant to the upper half plane, the interval $(0,1)$ to $(0,1)$, the positive part of the imaginary axis to the negative part of the real axis, and $(1, \infty)$ to $(1, \infty)$. Now it is enough to find a linear fractional transformation g which sends 0 to 0 , 1 to ∞, and ∞ to -1 . Then g would send the upper half plan to the upper half plane (since it preserves orientation), $(0,1)$ to $(0, \infty),(1, \infty)$ to $\{x \leq-1\}$, and the negative part of the real line to $(-1,0)$. One such linear fractional transformation is $g(z)=\frac{z}{-z+1}$. Now $g \circ f$ is a conformal map which sends the the first quadrant to the upper half plane, $(0,1)$ to $(0, \infty),(1, \infty) \cup i \mathbf{R}_{\geq 0}$ to the negative part of the real axis. The function $\frac{1}{\pi} \arg (z)$ as in part (a) is harmonic on the upper half plane with value 0 and 1 on the positive and negative part of the real axis respectively, so the function $u \circ g \circ f=\frac{1}{\pi} \arg \left(\frac{z^{2}}{-z^{2}+1}\right)$ is the harmonic function on the first quadrant with the desired values on the boundary.
4. We show that if f sends the imaginary axis to the imaginary axis, then f sends points symmetric with respect to the imaginary axis to points symmetric with respect to imaginary axis. For any $z \in \mathbf{C}, z$ and $-\bar{z}$ are symmetric with respect to the imaginary axis. So it is enough to show that for every $z, f(-z)+\overline{f(\bar{z})}=0$. Clearly, $f(-z)+\overline{f(\bar{z})}$ is holomorphic which is zero on the imaginary axis by our assumption, and since the zeros of a holomorphic function are not isolated only when the function is identical to zero, we get the desired result.

Also, we have shown that since f sends the real line to the real line, $f(z)=\overline{f(\bar{z})}$, so

$$
f(-z)=-\overline{f(\bar{z})}=-f(z)
$$

5. By Schwarz reflection principle, we can extend f to a meromorphic function on C. If $f(0) \neq 0$, then ∞ is a removable singularity for f, and if $f(0)=0$, then ∞ is a pole for f, so f is meromorphic on $\hat{\mathbf{C}}$. Hence by a result earlier proved in class, f is a rational function.
