Analysis I, Fall 2017

Solutions to Problem Set 2

1. We have $\lim \sup _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}}=\frac{1}{R_{1}}$ and $\lim \sup _{n \rightarrow \infty}\left|b_{n}\right|^{\frac{1}{n}}=\frac{1}{R_{2}}$. For every $\epsilon>0$ there is N such that if $n \geq N,\left|a_{n}\right|^{\frac{1}{n}}<\frac{1}{R_{1}}+\epsilon$ and $\left|b_{n}\right|^{\frac{1}{n}}<\frac{1}{R_{2}}+\epsilon$. So for every $n \geq N$

$$
\left|a_{n} b_{n}\right|^{\frac{1}{n}} \leq \frac{1}{R_{1} R_{2}}+\epsilon\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)+\epsilon^{2}
$$

Therefore $\lim _{\sup _{n \rightarrow \infty}}\left|a_{n} b_{n}\right|^{\frac{1}{n}} \leq \frac{1}{R_{1} R_{2}}$.
2. Let $w=\frac{z}{1+z}$, and $a_{n}=\frac{1}{\sqrt{n}}$. Then since $\lim a_{n}=0$ and a_{n} is non-increasing, by a convergence test that we proved in class, the series is convergence if $|w| \leq 1$ and $w \neq 1$, and obviously if $|w|>1$ or $w=1$, the series is divergent since the limit of the terms is not zero. But w cannot be equal to 1 , so the series is convergent whenever $\left|\frac{z}{1+z}\right| \leq 1$. That is $|z|^{2} \leq|1+z|^{2}$. Let $z=x+i y$, then we want $x^{2}+y^{2} \leq(x+1)^{2}+y^{2}$. This holds when $x \geq-\frac{1}{2}$.
4. Let $f_{k}(z)=\sum_{n=0}^{k} a_{n} z^{n}$. To show the statement it is enough to show that for every $\epsilon>0$, there is N such that for every $k>m \geq N$ and every z with $|z| \leq 1$ and $|z-1| \geq \delta$,

$$
\left|f_{k}(z)-f_{m}(z)\right|=\left|\sum_{n=m+1}^{k} a_{n} z^{n}\right|<\epsilon
$$

Let $B_{k}=1+z+\cdots+z^{k}$ and $M=\frac{2}{\delta}$. We have $\left|B_{k}\right| \leq \sum_{n=0}^{k}\left|z^{n}\right|=\frac{1-\mid z z^{k+1}}{1-|z|} \leq M$ for every $k \geq 0$. On the other hand, using summation by part we get

$$
\sum_{n=m+1}^{k} a_{n} z^{n}=\sum_{n=m+1}^{k-1} B_{n}\left(a_{n}-a_{n+1}\right)-a_{m+1} B_{m}+a_{k} B_{k} .
$$

Since $\lim _{n \rightarrow \infty} a_{n}=0$, there is N such that for every $k \geq N,\left|a_{n}\right|<\frac{\epsilon}{2 M}$, so

$$
\left|\sum_{n=m+1}^{k} a_{n} z^{n}\right| \leq M\left(a_{m+1}-a_{k}\right)+a_{m+1} M+a_{k} M=2 a_{m+1} M<\epsilon
$$

5. The image is the strip $\left\{z \left\lvert\,-\frac{\pi}{2}<\operatorname{Im} \mathrm{z}<\frac{\pi}{2}\right.\right\}$.
6. (a) Note that if A and B are such that $a_{0}=A+B$ and $a_{1}=A \alpha_{1}+B \alpha_{2}$, then by induction, for every $n \geq 2: a_{n}=a_{n-1}+a_{n-2}=A \alpha_{1}^{n-1}+B \alpha_{2}^{n-1}+A \alpha_{1}^{n-2}+B \alpha_{2}^{n-2}=$ $A \alpha_{1}^{n-2}\left(\alpha_{1}+1\right)+B \alpha_{2}^{n-2}\left(\alpha_{2}+1\right)$. But $\alpha_{1}+1=\alpha_{1}^{2}$ and $\alpha_{2}+1=\alpha_{2}^{2}$, so $a_{n}=A \alpha_{1}^{n}+B \alpha_{2}^{n}$.

So it is enough to find A and B such that

$$
A+B=1
$$

and

$$
A \alpha_{1}+B \alpha_{2}=1
$$

which has a unique solution.
(b) Let $\alpha_{1}=\frac{1-\sqrt{5}}{2}$ and $\alpha_{2}=\frac{1+\sqrt{5}}{2}$. Then

$$
\left|a_{n}\right|=\left|A \alpha_{1}^{n}+B \alpha_{2}^{n}\right|=|B|\left|\alpha_{2}\right|^{n}\left|\frac{A}{B}\left(\frac{\alpha_{1}}{\alpha_{2}}\right)^{n}+1\right| .
$$

But $\left|\frac{\alpha_{1}}{\alpha_{2}}\right|<1$, so $\lim _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}}=\left|a_{2}\right|$, so the radius of convergence is $\frac{1}{\alpha_{2}}$.
(c) If $|z|<\frac{1}{\alpha_{2}}$, then

$$
\sum_{n=1}^{\infty} a_{n} z^{n}=A \sum_{n=1}^{\infty}\left(\alpha_{1} z\right)^{n}+B \sum_{n=1}^{\infty}\left(\alpha_{2} z\right)^{n} .
$$

and both geometric series on the right hand side are convergent (since $\left|\alpha_{1} z\right|<\left|\alpha_{2} z\right|<$ 1.) The first one converges to $\frac{1}{1-\alpha_{1} z}$ and the second one converges to $\frac{1}{1-\alpha_{2} z}$. Therefore the $\sum a_{n} z^{n}$ converges to

$$
\frac{A}{1-\alpha_{1} z}+\frac{B}{1-\alpha_{2} z}=\frac{(A+B)-z\left(A \alpha_{2}+B \alpha_{1}\right)}{1-\left(\alpha_{1}+\alpha_{2}\right) z+\alpha_{1} \alpha_{2} z^{2}}=\frac{1}{1-z-z^{2}}
$$

since $\alpha_{1}+\alpha_{2}=1, \alpha_{1} \alpha_{2}=-1, A+B=a_{0}=1$, and $A \alpha_{2}+B \alpha_{1}=(A+B)\left(\alpha_{1}+\alpha_{2}\right)-$ $A \alpha_{1}=B \alpha_{2}=1-a_{1}=0$.

