Analysis I, Fall 2017

Solutions to Problem Set 3

3. Write $z=x+i y$, then

$$
f_{M}(z)=\frac{(a z+b)(c \bar{z}+d)}{|c z+d|^{2}}=\frac{(a x+b+i y a)(c x+d-i y c)}{|c z+d|^{2}} .
$$

So

$$
|c z+d|^{2} \operatorname{Im} f_{M}(z)=y a(c x+d)-y c(a x+b)=y(a d-b c) .
$$

Hence the imaginary part of $f_{M}(z)$ is positive if $y>0$.
4. Let $C R\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\frac{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)}{\left(z_{1}-z_{4}\right)\left(z_{2}-z_{3}\right)}=\lambda$. Then we have

$$
C R\left(z_{2}, z_{1}, z_{4}, z_{3}\right)=C R\left(z_{4}, z_{3}, z_{2}, z_{1}\right)=C R\left(z_{3}, z_{4}, z_{1}, z_{2}\right)=\lambda .
$$

So we we only need to consider 6 different permutations: Every other permutation has a cross ratio equal to one of the following.

- $C R\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\lambda$
- $C R\left(z_{1}, z_{2}, z_{4}, z_{3}\right)=\frac{\left(z_{1}-z_{4}\right)\left(z_{2}-z_{3}\right)}{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)}=\frac{1}{\lambda}$
- $C R\left(z_{1}, z_{3}, z_{2}, z_{4}\right)=1-\lambda$
- $C R\left(z_{1}, z_{3}, z_{4}, z_{2}\right)=\frac{1}{1-\lambda}$
- $C R\left(z_{1}, z_{4}, z_{3}, z_{2}\right)=1-\frac{1}{1-\lambda}=\frac{\lambda}{\lambda-1}$
- $C R\left(z_{1}, z_{4}, z_{2}, z_{3}\right)=\frac{\lambda-1}{\lambda}$

5. Let $f=u+i v$, and $A=\left[\begin{array}{ll}u_{x}\left(x_{0}, y_{0}\right) & u_{y}\left(x_{0}, y_{0}\right) \\ v_{x}\left(x_{0}, y_{0}\right) & v_{y}\left(x_{0}, y_{0}\right)\end{array}\right]$. If C is a smooth curve given by parametrization $\gamma(t)=x(t)+i y(t):[a, b] \rightarrow \mathbf{C}$, and $\gamma\left(t_{0}\right)=z_{0}$, then the tangent vector to C at z_{0} is given by $v=\left[\begin{array}{l}x^{\prime}\left(t_{0}\right) \\ y^{\prime}\left(t_{0}\right)\end{array}\right]$, and by the chain rule the tangent vector
to $f \circ \gamma$ is given by $A v$. So A is a 2 by 2 real matrix which preserves angles. Then suppose that $A\left[\begin{array}{l}1 \\ 0\end{array}\right]$ has angle θ with the positive direction of the real axis. If

$$
B_{-\theta}=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

is the matrix of rotation by $-\theta$, then $C=B_{-\theta} A$ also preserves angles and sends $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ to a vector $\left[\begin{array}{l}r \\ 0\end{array}\right]$ with $r>0$. Therefore it sends the vector $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ to $\left[\begin{array}{l}0 \\ s\end{array}\right]$ for some non-zero $s \in \mathbf{R}$. So

$$
C=\left[\begin{array}{ll}
r & 0 \\
0 & s
\end{array}\right]
$$

Then $C\left[\begin{array}{l}1 \\ 1\end{array}\right]$ should be of the form $\left[\begin{array}{l}\lambda \\ \lambda\end{array}\right]$ or $\left[\begin{array}{c}\lambda \\ -\lambda\end{array}\right]$, so $r=s$ or $r=-s$ and hence

$$
A=\left[\begin{array}{cc}
r \cos \theta & r \sin \theta \\
-r \sin \theta & r \cos \theta
\end{array}\right] \quad \text { or } \quad A=\left[\begin{array}{cc}
r \cos \theta & -r \sin \theta \\
-r \sin \theta & -r \cos \theta
\end{array}\right]
$$

So either $u_{x}=v_{y}, v_{x}=-u_{y}$ or $u_{x}=-v_{y}, v_{x}=u_{y}$. So either $u+i v$ satisfies the Cauchy-Reimann equations or $u-i v$ does, and since the partial derivatives are continuous, this implies either f or \bar{f} is holomorphic at z_{0}. It is clear that in either case the matrix A is non-zero.
6. (a) It is enough to show if $|z|<1$, then $|z-\alpha|^{2}<|-\bar{\alpha} z+1|^{2}$. We have

$$
\begin{aligned}
|-\bar{\alpha} z+1|^{2}-|z-\alpha|^{2} & =(-\bar{\alpha} z+1)(-\alpha \bar{z}+1)-(z-\alpha)(\bar{z}-\bar{\alpha}) \\
& =\alpha \bar{\alpha} z \bar{z}-\alpha \bar{\alpha}-z \bar{z}+1 \\
& =(\alpha \bar{\alpha}-1)(z \bar{z}-1) \\
& =\left(|\alpha|^{2}-1\right)\left(|z|^{2}-1\right)>0
\end{aligned}
$$

since α and z both belong to the unit circle.
(b) Let $f(z)=\frac{a z+b}{c z+d}$. Let α be so that $f(\alpha)=0$, then since α and $\frac{\alpha}{|\alpha|^{2}}$ are conjugates with respect to the unit circle, $f\left(\frac{\alpha}{|\alpha|^{2}}\right)$ should be the conjugate of zero which is infinity. Also if $f(0)=\beta$, then $f(\infty)=\frac{\beta}{|\beta|^{2}}$. So we have the following relations:

$$
\alpha=-\frac{b}{a}, \quad \beta=\frac{b}{d}, \frac{\alpha}{|\alpha|^{2}}=-\frac{d}{c}, \quad \frac{\beta}{|\beta|^{2}}=\frac{a}{c} .
$$

Multiplying the first and last identities, and then multiplying the middle two identities, we get $\frac{\alpha \beta}{|\beta|^{2}}=-\frac{b}{c}=\frac{\beta \alpha}{|\alpha|^{2}}$., so $|\alpha|=|\beta|$. Let $\beta=e^{i \phi} \alpha$. Then $b=-\alpha a$, $c=a|\beta|^{2} / \beta=e^{-i \phi} a|\alpha|^{2} / \alpha=e^{-i \phi} a \bar{\alpha}$, and $d=-c \alpha /|\alpha|^{2}=-c / \bar{\alpha}=-e^{-i \phi} a$. If we plug in these identities, we get

$$
f(z)=-e^{i \phi} \frac{z-\alpha}{-\bar{\alpha} z+1} .
$$

Set $\theta=-(\pi+\phi)$. Then $e^{-i \theta}=-e^{i \phi}$, and we get the desired form.

