Complex Analysis I, Fall 2017

Solutions to Problem Set 4

1. Since 0 and ∞ are conjugate with respect to the circle $|z|=2$, the linear fractional transformation should send ∞ to the conjugate of i with respect to the circle $|z+1|=1$ which is $w=\frac{\sqrt{2}}{2} e^{\frac{3 \pi i}{4}}$.

So

$$
f=\frac{w z+2 w}{z-2 i w}=\frac{z+2}{\frac{z}{w}-2 i} .
$$

3. We have

$$
\sqrt{1+z}+\sqrt{1-z}=e^{\frac{1}{2} \log (1+z)}+e^{\frac{1}{2} \log (1-z)} .
$$

Since the exponential function is holomorphic everywhere on \mathbf{C}, the function $\sqrt{1+z}+$ $\sqrt{1-z}$ is holomorphic whenever $\log (1+z)$ and $\log (1-z)$ are both holomorphic. For example, since $\log (1+z)$ is holomorphic on $\mathbf{C} \backslash \mathbf{R}_{\leq-1}$ and $\log (1-z)$ is holomorphic on $\mathbf{C} \backslash \mathbf{R}_{\geq 1}, \sqrt{1+z}+\sqrt{1-z}$ is holomorphic on $\mathbf{C} \backslash\left(\mathbf{R}_{\leq-1} \cup \mathbf{R}_{\geq 1}\right)$ which is an open set.
4. Set $w=\tan z$. Then

$$
w=\tan z=\frac{\sin z}{\cos z}=-i \frac{e^{i z}-e^{-i z}}{e^{i z}+e^{-i z}}=-i \frac{e^{2 i z}-1}{e^{2 i z}+1} .
$$

Set $\alpha=e^{i z}$. Then $w=-i \frac{\alpha^{2}-1}{\alpha^{2}+1}$, so $\left(\alpha^{2}+1\right) w=-i\left(\alpha^{2}-1\right)$, therefore, $\alpha^{2}(w+i)=$ ($i-w)$. So

$$
e^{2 i z}=\frac{i-w}{i+w} .
$$

and $2 i z=\log \frac{i-w}{i+w}$. So

$$
\arctan w=-\frac{i}{2} \log \left(\frac{i-w}{i+w}\right) .
$$

5. (a) Let C be a circle passing through 1 . Then $f(C)$ is either a circle or a line in \mathbf{C}. Since $f(1)=\infty$, the image of $f(C)$ is a line. Since C and the real axis are orthogonal
by our assumption, and since linear fractional transformations preserve angles, $f(C)$ should be orthogonal to the imaginary axis.
(b) First we construct a linear fractional transformation f such that $f(1)=$ $\infty, f(0)=i, f(-1)=0$. Such a function will send the circle $|z|=1$ to the real line and the circle $\left|z-\frac{1}{2}\right|=\frac{1}{2}$ to the line $y-i$ by part (a). Solving the system of linear equations we find

$$
f(z)=\frac{z+1}{i z-i} .
$$

Since $f(0)=i, f$ sends inside of circle $|z|=1$ to the upper half plane, and since $f(-1)=0 f$ sends the half plane $y<1$ to the outside of the circle $\left|z-\frac{1}{2}\right|=\frac{1}{2}$. Therefore the area between the two circles is mapped to the strip $0<y<1$. Any linear fractional transformation $f(z)=\frac{a z+b}{c z+d}$ is bijective and it is conformal at $z \neq$ $-d / c$.
6. (a) If $z=x+i y$, then $f(z)=\frac{1}{2}\left(x+\frac{x}{x^{2}+y^{2}}+i\left(y-\frac{y}{x^{2}+y^{2}}\right)\right)$. Therefore is $f(z) \in[-1,1]$, then $\operatorname{Im} \mathrm{f}(\mathrm{z})=0$, so $x^{2}+y^{2}=0$ or $y=0$. If $y=0$, then $-2 \leq f(z)=x+\frac{1}{x} \leq 2$, so if z is outside the unit circle, $f(z)$ does not belong to $[-1,1]$, and if z is on the unit circle, then $f(z) \in[-1,1]$.

If $w=\frac{1}{2}\left(z+\frac{1}{z}\right)$, then $z^{2}-2 w z+1=0$. Therefore $(w-z)\left(w-\frac{1}{z}\right)=0$. (and $f^{-1}(w)=\left\{z, \frac{1}{z}\right\}$.) If $|z|>1$, then $\left|\frac{1}{z}\right|<1$, so f is a bijection from the outside of the unit circle to $\mathbf{C} \backslash[-1,1]$. And $f^{\prime}(z)=\frac{z^{2}-1}{z^{2}}$ which is not zero outside the unit circle, so f is conformal outside the unit circle.
(b) Note that in part (a), the function f sends the region outside the unit circle in the second quadrant bijectively to the second quadrant (since $x<0$ and $y<0$, and $x^{2}+y^{2}>1, x+\frac{x}{x^{2}+y^{2}}<0$, and $y-\frac{y}{x^{2}+y^{2}}>0$) We have

$$
\sin z=-\frac{i}{2}\left(e^{i z}-e^{-i z}\right)=-\left(\frac{1}{2}\left(i e^{i z}+\frac{1}{i e^{i z}}\right)\right) .
$$

Let S_{1} be the strip $0<x<\pi / 2, y<0$. Then

- $z \mapsto i z$ maps S_{1} to bijectively onto the strip $S_{2}=\{z: 0<y<\pi / 2, x>0\}$.
- $z \mapsto e^{i z}$ maps S_{1} bijectively onto the region $S_{3}=\{z:|z|>1, x, y>0\}$.
- $z \mapsto i e^{-z}$ maps S_{1} bijectively onto the region $S_{4}=\{z:|z|>1, x<0, y>0\}$.
- $z \mapsto \frac{1}{2}\left(i e^{-z}+\frac{1}{i e^{i z}}\right)$ maps the region S_{1} bijectively onto the second quadrant by part (a)
- $z \mapsto \sin z$ sends S_{1} bijectively onto the fourth quadrant $x>0, y<0$.

