Complex Analysis I, Fall 2017

Solutions to Problem Set 4

1. Since 0 and ∞ are conjugate with respect to the circle |z| = 2, the linear fractional transformation should send ∞ to the conjugate of *i* with respect to the circle |z+1| = 1 which is $w = \frac{\sqrt{2}}{2}e^{\frac{3\pi i}{4}}$.

 \mathbf{So}

$$f = \frac{wz + 2w}{z - 2iw} = \frac{z + 2}{\frac{z}{w} - 2i}.$$

3. We have

$$\sqrt{1+z} + \sqrt{1-z} = e^{\frac{1}{2}\log(1+z)} + e^{\frac{1}{2}\log(1-z)}.$$

Since the exponential function is holomorphic everywhere on \mathbf{C} , the function $\sqrt{1+z} + \sqrt{1-z}$ is holomorphic whenever $\log(1+z)$ and $\log(1-z)$ are both holomorphic. For example, since $\log(1+z)$ is holomorphic on $\mathbf{C} \setminus \mathbf{R}_{\leq -1}$ and $\log(1-z)$ is holomorphic on $\mathbf{C} \setminus \mathbf{R}_{\geq 1}$, $\sqrt{1+z} + \sqrt{1-z}$ is holomorphic on $\mathbf{C} \setminus (\mathbf{R}_{\leq -1} \cup \mathbf{R}_{\geq 1})$ which is an open set.

4. Set $w = \tan z$. Then

$$w = \tan z = \frac{\sin z}{\cos z} = -i \frac{e^{iz} - e^{-iz}}{e^{iz} + e^{-iz}} = -i \frac{e^{2iz} - 1}{e^{2iz} + 1}$$

Set $\alpha = e^{iz}$. Then $w = -i \frac{\alpha^2 - 1}{\alpha^2 + 1}$, so $(\alpha^2 + 1)w = -i(\alpha^2 - 1)$, therefore, $\alpha^2(w + i) = (i - w)$. So

$$e^{2iz} = \frac{i-w}{i+w}$$

and $2iz = \log \frac{i-w}{i+w}$. So

$$\arctan w = -\frac{i}{2}\log(\frac{i-w}{i+w}).$$

5. (a) Let C be a circle passing through 1. Then f(C) is either a circle or a line in **C**. Since $f(1) = \infty$, the image of f(C) is a line. Since C and the real axis are orthogonal by our assumption, and since linear fractional transformations preserve angles, f(C) should be orthogonal to the imaginary axis.

(b) First we construct a linear fractional transformation f such that $f(1) = \infty, f(0) = i, f(-1) = 0$. Such a function will send the circle |z| = 1 to the real line and the circle $|z - \frac{1}{2}| = \frac{1}{2}$ to the line y - i by part (a). Solving the system of linear equations we find

$$f(z) = \frac{z+1}{iz-i}.$$

Since f(0) = i, f sends inside of circle |z| = 1 to the upper half plane, and since f(-1) = 0 f sends the half plane y < 1 to the outside of the circle $|z - \frac{1}{2}| = \frac{1}{2}$. Therefore the area between the two circles is mapped to the strip 0 < y < 1. Any linear fractional transformation $f(z) = \frac{az+b}{cz+d}$ is bijective and it is conformal at $z \neq -d/c$.

6. (a) If z = x + iy, then $f(z) = \frac{1}{2}(x + \frac{x}{x^2 + y^2} + i(y - \frac{y}{x^2 + y^2}))$. Therefore is $f(z) \in [-1, 1]$, then Im f(z) = 0, so $x^2 + y^2 = 0$ or y = 0. If y = 0, then $-2 \le f(z) = x + \frac{1}{x} \le 2$, so if z is outside the unit circle, f(z) does not belong to [-1, 1], and if z is on the unit circle, then $f(z) \in [-1, 1]$.

If $w = \frac{1}{2}(z + \frac{1}{z})$, then $z^2 - 2wz + 1 = 0$. Therefore $(w - z)(w - \frac{1}{z}) = 0$. (and $f^{-1}(w) = \{z, \frac{1}{z}\}$.) If |z| > 1, then $|\frac{1}{z}| < 1$, so f is a bijection from the outside of the unit circle to $\mathbf{C} \setminus [-1, 1]$. And $f'(z) = \frac{z^2 - 1}{z^2}$ which is not zero outside the unit circle, so f is conformal outside the unit circle.

(b) Note that in part (a), the function f sends the region outside the unit circle in the second quadrant bijectively to the second quadrant (since x < 0 and y < 0, and $x^2 + y^2 > 1$, $x + \frac{x}{x^2 + y^2} < 0$, and $y - \frac{y}{x^2 + y^2} > 0$) We have

$$\sin z = -\frac{i}{2}(e^{iz} - e^{-iz}) = -(\frac{1}{2}(ie^{iz} + \frac{1}{ie^{iz}})).$$

Let S_1 be the strip $0 < x < \pi/2, y < 0$. Then

- $z \mapsto iz$ maps S_1 to bijectively onto the strip $S_2 = \{z : 0 < y < \pi/2, x > 0\}.$
- $z \mapsto e^{iz}$ maps S_1 bijectively onto the region $S_3 = \{z : |z| > 1, x, y > 0\}.$
- $z \mapsto ie^{-z}$ maps S_1 bijectively onto the region $S_4 = \{z : |z| > 1, x < 0, y > 0\}.$
- z → ¹/₂(ie^{-z} + ¹/_{ie^{iz}}) maps the region S₁ bijectively onto the second quadrant by part (a)
- $z \mapsto \sin z$ sends S_1 bijectively onto the fourth quadrant x > 0, y < 0.