Complex Analysis, Fall 2017

Solutions to Problem Set 5
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3. By the generalized version of Cauchy’s integral formula if C' is circle of radius r
around 0 which is positively oriented and zg is such that |zp| < r, then
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Letting r — 0o, we see that f("T1)(z) = 0 for every zy. Therefore, f is a polynomial
of degree at most n.

4. For any r < 1, and let C' be the circle of radius r around 0 positively oriented. We
have
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The function (1 — T)T takes its maximum at r = 25 in the interval [0, 1], so the
minimum value of (17,1 is
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5. There are two different values of y/z that we can consider in this region to get a
holomorli)hm function. One choice would be the root of z in the upper half plane, so
21/2 = 21987 where

logz =log|z| +iargz, 0<argz <.

And a primitive would be %z3/ 2 = %e%bgz . For this choice we get:

If we use the definition, we get
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If we use the primitive we get
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6. Assume to the contrary that f(C) is not dense. Then there is zp € C, and € > 0
such that f(C) N D(z9,€) = (. Then the function g(z) = f(z)lﬁ is also entire, and
is bounded \m| < % So by Liouville’s theorem, g(z) is constant, and therefore
f(2) is constant, a contradiction.

7. Let v : [0,1] — C be a path with initial point p and end point q. We show that ~y
is homotopic to the path which goes first from p to zp on a straight line and then zg
to ¢ on a straight line, that is

7 :[0,1] = C, Y(t) = {(1 2+ R0 for0 = f
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It is easy to see that being homotopic is an equivalence relation on the set of paths
with initial point p and end point ¢, and therefore this will prove that U is simply
connected.
Now if v and +' are as above, the following map
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is a continuous function such that F(0,t) = v(t), F(1,t) = +/(t) for all ¢, and F(s,0) =
p and F'(s,1) = ¢ for all s.

8. For every ¢, there is N such that for n,m > N, |fn(2) — fm(2)| < € for all =z
in the boundary of U. But since U is bounded and closed, it is compact, and since
| fn(2) — fm(2)| is continuous on U, it takes its maximum value on U. Since f,, — fm
is holomorphic, the maximum modulus should be obtained on the boundary, and
therefore |f(z) — fm(2)| < € for all z € U. Therefore { f,} is uniformly convergent on
U.



