Complex Analysis, Fall 2017

Solutions to Problem Set 5

1. (a)

$$
\int_{|z|=1} \frac{\cos \left(z^{2}\right)}{z} d z=2 \pi i \cos (0)=2 \pi i .
$$

(b)

$$
\int_{|z|=2} \frac{1}{z^{2}+1} d z=\frac{1}{2 i} \int_{|z|=2} \frac{1}{z-i} d z-\frac{1}{2 i} \int_{|z|=2} \frac{1}{z+i} d z=\frac{1}{2 i}(2 \pi i-2 \pi i)=0 .
$$

(c)

$$
\int_{|z|=1} \frac{e^{z}}{z^{n}} d z=\frac{2 \pi i}{(n-1)!}\left(e^{z}\right)^{(n-1)}(0)=\frac{2 \pi i}{(n-1)!} .
$$

2. We have

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \int_{\gamma}\left(\frac{1}{z-\alpha}-\frac{1}{z-\alpha^{\prime}}\right) d z & =\lim _{x \rightarrow 0^{+}} \int_{-1}^{1}\left(\frac{1}{z(t)-\alpha}-\frac{1}{z(t)-\alpha^{\prime}}\right) z^{\prime}(t) d t \\
& =i \lim _{x \rightarrow 0^{+}} \int_{-1}^{1}\left(\frac{1}{i t-x}-\frac{1}{i t+x}\right) d t . \\
& =-2 i \lim _{x \rightarrow 0^{+}} x \int_{-1}^{1} \frac{1}{t^{2}+x^{2}} d t \\
& =-\left.2 i \lim _{x \rightarrow 0^{+}} x \frac{1}{x} \arctan \left(\frac{t}{x}\right)\right|_{-1} ^{1} \\
& =-2 i \lim _{x \rightarrow 0^{+}}\left(\arctan \left(\frac{1}{x}\right)-\arctan \left(\frac{-1}{x}\right)\right) \\
& =-2 i\left(\frac{\pi}{2}-\frac{-\pi}{2}\right)=-2 i \pi .
\end{aligned}
$$

3. By the generalized version of Cauchy's integral formula if C is circle of radius r around 0 which is positively oriented and z_{0} is such that $\left|z_{0}\right|<r$, then

$$
f^{(n+1)}\left(z_{0}\right)=\frac{(n+1)!}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+2}} d z
$$

Therefore,

$$
\left|f^{(n+1)}\left(z_{0}\right)\right| \leq \frac{(n+1)!}{2 \pi} \operatorname{length}(C) \max _{z \in C} \frac{|f(z)|}{r^{n+2}}=\frac{(n+1)!}{r^{n+1}} \max _{z \in C}|f(z)| \leq \frac{M(n+1)!}{r}
$$

Letting $r \rightarrow \infty$, we see that $f^{(n+1)}\left(z_{0}\right)=0$ for every z_{0}. Therefore, f is a polynomial of degree at most n.
4. For any $r<1$, and let C be the circle of radius r around 0 positively oriented. We have

$$
\begin{aligned}
\left|f^{(n)}(0)\right|=\left|\frac{n!}{2 \pi i} \int_{C} \frac{f(z)}{z^{n+1}} d z\right| & \leq\left|\frac{n!}{2 \pi i}\right| \text { length }(C) \max _{z \in C}\left|\frac{f(z)}{z^{n+1}}\right| \\
& \leq \frac{n!}{2 \pi}(2 \pi r) \max _{z \in C} \frac{1}{(1-|z|)\left|z^{n+1}\right|} \\
& =\frac{n!}{2 \pi} \frac{1}{(1-r) r^{n+1}}(2 \pi r) \\
& =\frac{n!}{(1-r) r^{n}} .
\end{aligned}
$$

The function $(1-r) r^{n}$ takes its maximum at $r=\frac{n}{n+1}$ in the interval $[0,1]$, so the minimum value of $\frac{n!}{(1-r) r^{n}}$ is

$$
\frac{(n+1)!(n+1)^{n}}{n^{n}} .
$$

5. There are two different values of \sqrt{z} that we can consider in this region to get a holomorphic function. One choice would be the root of z in the upper half plane, so $z^{1 / 2}=e^{\frac{1}{2} \log z}$ where

$$
\log z=\log |z|+i \arg z, \quad 0 \leq \arg z \leq \pi .
$$

And a primitive would be $\frac{2}{3} z^{3 / 2}=\frac{2}{3} e^{\frac{3}{2} \log z}$. For this choice we get:
If we use the definition, we get

$$
\int_{\gamma} \sqrt{z} d z=i \int_{0}^{\pi} \sqrt{e^{i t}} e^{i t} d t=i \int_{0}^{\pi} e^{3 i t / 2} d t=\frac{2}{3}\left(e^{3 i \pi / 2}-1\right)=\frac{2}{3}(-i-1) .
$$

If we use the primitive we get

$$
\int_{\gamma} \sqrt{z} d z=\frac{2}{3} \int_{\gamma}\left(z^{3 / 2}\right)^{\prime} d z=\frac{2}{3}\left(i^{3 / 2}-1\right)=\frac{2}{3}(-i-1) .
$$

6. Assume to the contrary that $f(\mathbf{C})$ is not dense. Then there is $z_{0} \in \mathbf{C}$, and $\epsilon>0$ such that $f(C) \cap D\left(z_{0}, \epsilon\right)=\emptyset$. Then the function $g(z)=\frac{1}{f(z)-z_{0}}$ is also entire, and is bounded $\left|\frac{1}{f(z)-z_{0}}\right|<\frac{1}{\epsilon}$. So by Liouville's theorem, $g(z)$ is constant, and therefore $f(z)$ is constant, a contradiction.
7. Let $\gamma:[0,1] \rightarrow \mathbf{C}$ be a path with initial point p and end point q. We show that γ is homotopic to the path which goes first from p to z_{0} on a straight line and then z_{0} to q on a straight line, that is

$$
\gamma^{\prime}:[0,1] \rightarrow \mathbf{C}, \quad \gamma^{\prime}(t)=\left\{\begin{array}{l}
(1-2 t) p+(2 t) z_{0} \quad \text { for } 0 \leq t \leq \frac{1}{2} \\
(2-2 t) z_{0}+(2 t-1) q \quad \text { for } \frac{1}{2} \leq t \leq 1
\end{array}\right.
$$

It is easy to see that being homotopic is an equivalence relation on the set of paths with initial point p and end point q, and therefore this will prove that U is simply connected.

Now if γ and γ^{\prime} are as above, the following map

$$
F:[0,1] \times[0,1] \rightarrow \mathbf{C}: F(s, t)= \begin{cases}(1-2 t) p+(2 t) z_{0} & 0 \leq t \leq \frac{s}{2} \\ (1-s) \gamma\left(\frac{t-\frac{s}{2}}{1-s}\right)+s z_{0} & \frac{s}{2} \leq t \leq 1-\frac{s}{2} \\ (2-2 t) z_{0}+(2 t-1) q & 1-\frac{s}{2} \leq t \leq 1\end{cases}
$$

is a continuous function such that $F(0, t)=\gamma(t), F(1, t)=\gamma^{\prime}(t)$ for all t, and $F(s, 0)=$ p and $F(s, 1)=q$ for all s.
8. For every ϵ, there is N such that for $n, m \geq N,\left|f_{n}(z)-f_{m}(z)\right|<\epsilon$ for all z in the boundary of U. But since \bar{U} is bounded and closed, it is compact, and since $\left|f_{n}(z)-f_{m}(z)\right|$ is continuous on \bar{U}, it takes its maximum value on \bar{U}. Since $f_{n}-f_{m}$ is holomorphic, the maximum modulus should be obtained on the boundary, and therefore $\left|f(z)-f_{m}(z)\right|<\epsilon$ for all $z \in U$. Therefore $\left\{f_{n}\right\}$ is uniformly convergent on U.

