Complex Analysis, Fall 2017

Solutions to Problem Set 6

1. The roots of $z^{2}+z+1$ are the third roots of 1 so each of them is a zero of order 1 and in disk $|z|<2$. The winding number of C with respect to both roots is 1 , so

$$
\int_{C} \frac{\left(z^{2}+z+1\right)^{\prime}}{z^{2}+z+1} d z=4 \pi i .
$$

2.

(a) The function e^{z} maps \mathbf{C} to $\mathbf{C} \backslash\{0\}$ which is not simply connected.
(b) Let z_{0} be a point in U, and for a point $w \in U$, define

$$
g(w)=\int_{g} \frac{f^{\prime}(z)}{f(z)} d z
$$

where γ is any path connecting z_{0} to w in U. This is a well-defined function since the integral does not depend on the choice of the path. By what we have shown before in class, g is holomorphic on U and $g^{\prime}(z)=\frac{f^{\prime}(z)}{f(z)}$. So

$$
\left(f(z) e^{-g(z)}\right)^{\prime}=0
$$

Therefore $f(z) e^{-g(z)}$ is a constant c on U. Evaluating at z_{0}, we get $c=f\left(z_{0}\right)$ (since $g\left(z_{0}\right)=0$). Let $c=e^{a}$ for some complex number a_{0}, then $f(z) e^{-g(z)}=e^{a}$, so $f(z)=e^{g(z)+a}$ and $g(z)+a$ is holomorphic on U.
3. Near 0 , we have $|z f(z)| \leq|z|^{1 / 2}$. Therefore $\lim _{z \rightarrow 0} z f(z)=0$, so 0 is a removable singularity.
4. To show the statement it is enough to show that if z_{0} is an isolated singularity of $f(z)$ which is a removable singularity of $e^{f(z)}$, then z_{0} is a removable singularity of $f(z)$. Assuming this, if $\operatorname{Re} \mathrm{f}(\mathrm{z})<M$ for some M and all z near z_{0}, then $\left|e^{f(z)}\right|=e^{\operatorname{Ref}(z)} \leq e^{M}$ and therefore z_{0} is a removable singularity of e^{f} and therefore a removable singularity of f. Similarly if $\operatorname{Re} \mathrm{f}(\mathrm{z})>M$ for some M, then
$\left|e^{-f(z)}\right|=e^{-\operatorname{Ref}(\mathrm{z})} \leq e^{-M}$ and therefore z_{0} is a removable singularity of e^{-f} and so a removable singularity of $-f$ and f.

Assume now that z_{0} is a removable singularity of e^{f}. Then there is M such that for all z near $z_{0},\left|e^{f(z)}\right|<M$, so $\operatorname{Re} \mathrm{f}(\mathrm{z})<\log M$, so by Casorati-Weierstrass theorem, z_{0} cannot be an essential singularity of f. If z_{0} is a pole of f, then in a punctured disk near z_{0} we can write $f(z)=\frac{g(z)}{\left(z-z_{0}\right)^{k}}$ where g is holomorphic and $g\left(z_{0}\right) \neq 0$. Let $g\left(z_{0}\right)=r e^{i \theta}$, and

$$
z_{n}=z_{0}+\frac{e^{i \theta / n}}{n}
$$

Then since $f\left(z_{n}\right)=g\left(z_{n}\right) e^{-i \theta} n^{n}$ and $\lim _{n \rightarrow \infty} g\left(z_{n}\right)=r e^{i \theta}, \lim _{n \rightarrow \infty} e^{f\left(z_{n}\right)}=\infty$. So if z_{0} is a pole of f, it cannot be a removable singularity of e^{f}. This is enough for what we wanted to prove, but you can also show that a pole of f is never a pole of e^{f} by looking at the sequence

$$
w_{n}=z_{0}+\frac{e^{i(\pi+\theta)} / n}{n}
$$

and observing that $\lim _{n \rightarrow \infty} e^{f\left(w_{n}\right)}=0$.
5. For z near z_{0} we can write $f(z)-f\left(z_{0}\right)=a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+\ldots$ with $a_{1}=f^{\prime}\left(z_{0}\right) \neq 0$, so

$$
f(z)-f\left(z_{0}\right)=a_{1}\left(z-z_{0}\right)\left(1+\frac{a_{2}}{a_{1}}\left(z-z_{0}\right)+\ldots\right)
$$

So the function $\frac{z-z_{0}}{f(z)-f\left(z_{0}\right)}$ has a removable singularity at z_{0} and can be extended to a holomorphic function whose value at z_{0} is the value of the function $\frac{1}{a_{1}\left(1+\frac{a_{2}}{a_{1}}\left(z-z_{0}\right)+\ldots\right)}$ at z_{0} which is $\frac{1}{a_{1}}$. So by the Cauchy's integral formula, we have

$$
\frac{1}{2 \pi i} \int_{C} \frac{1}{f(z)-f\left(z_{0}\right)} d z=\frac{1}{a_{1}}=\frac{1}{f^{\prime}\left(z_{0}\right)}
$$

