Complex Analysis, Fall 2017

Solutions to Problem Set 7

1. We have proved the statement for automorphisms f such that $f(i)=i$. Assume now $f(i)=z_{0}$. It is enough to show that there is a matrix $M \in \mathrm{SL}_{2}(\mathbf{R})$ such that $f_{M}\left(z_{0}\right)=i$, since this gives $f_{M} \circ f(i)=i$, and therefore $f_{M} \circ f=f_{N}$ for some $N \in \mathrm{SL}_{2}(\mathbf{R})$, so $f=f_{M}^{-1} \circ f_{N}=f_{M^{-1} N}$.

Now note that if $z_{0}=a+i b$, and

$$
A=\left[\begin{array}{cc}
1 & -a \\
0 & 1
\end{array}\right],
$$

then $f_{A}\left(z_{0}\right)=i b$. And if $r=\frac{1}{\sqrt{b}}$, and

$$
B=\left[\begin{array}{cc}
r & 0 \\
0 & \frac{1}{r}
\end{array}\right],
$$

then $f_{B}(i b)=i$., so $f_{B A}\left(z_{0}\right)=i$ and $B, A \in \mathrm{SL}_{2}(\mathrm{R})$.
2. For $|z|>1$, we have

$$
\begin{aligned}
f(z)=\frac{1}{\left(z^{2}-1\right)^{2}}=\frac{1}{4 z}\left(\frac{1}{(z-1)^{2}}-\frac{1}{(z+1)^{2}}\right) & =\frac{1}{4 z^{3}}\left(\frac{1}{(1-1 / z)^{2}}-\frac{1}{\left.(1+1 / z)^{2}\right)}\right) \\
& =\frac{1}{4 z^{3}}\left(\sum_{n \geq 1} \frac{n}{z^{n-1}}-\sum_{n \geq 1}(-1)^{n} \frac{n}{z^{n-1}}\right) \\
& =\frac{1}{4 z^{3}}\left(\sum_{n \geq 1}\left(1+(-1)^{n}\right) \frac{n}{z^{n-1}}\right) \\
& =\sum_{n \geq 1} \frac{n}{z^{2 n+2}} .
\end{aligned}
$$

3. (a) Let $c_{n}=\operatorname{Res}_{z=z_{j}}(f)$, and let R be sufficiently large so that $\left|z_{j}\right|<R$ for all j. Then residue formula gives

$$
\int_{|Z|=R} f(z) d z=2 \pi i \sum_{k} c_{k}
$$

so

$$
\operatorname{Res}_{z=\infty}(f)+\sum_{k} \operatorname{Res}_{z=z_{k}}(f)=0
$$

(b) Let R be large enough so that all the poles of $f(z)$ are outside the circle $|z|=R$, and so $f\left(\frac{1}{z}\right)$ is holomorphic on $\left\{z: 0<|z|<\frac{1}{R}\right\}$ Then the residue theorem for $g(z):=\frac{-1}{z^{2}} f\left(\frac{1}{z}\right)$ gives:

$$
\begin{aligned}
\operatorname{Res}_{z=0}(g)=\int_{|z|=\frac{1}{R}} \frac{-1}{z^{2}} f\left(\frac{1}{z}\right) d z & =\frac{-1}{2 \pi i} \int_{0}^{2 \pi} R^{2} e^{2 i \theta} f\left(R e^{-i \theta}\right) \frac{1}{R} i e^{-i \theta} d \theta \\
& =\frac{-1}{2 \pi i} \int_{0}^{2 \pi} i R e^{-i \theta} f\left(R e^{-i \theta}\right) d \theta \\
& =\frac{1}{2 \pi i} \int_{0}^{2 \pi} i R e^{i \theta} f\left(R e^{i \theta}\right) d \theta \\
& =\operatorname{Res}_{z=\infty}(f)
\end{aligned}
$$

4. We let $\alpha=f(0)$ and $g=\psi_{\alpha} \circ f$, where $\psi_{\alpha} \in \operatorname{Aut}(\mathbf{D})$

$$
\psi_{\alpha}(z)=\frac{\alpha-z}{1-\bar{\alpha} z}
$$

Then we can apply Schwarz lemma to $g(z)$ since $g(0)=0$.
5. Let $g(z)=f^{-1}(i f(z))$. The

$$
g^{\prime}(z)=\frac{i f^{\prime}(z)}{f^{\prime}\left(f^{-1}(i f(z))\right)}
$$

(f is conformal everywhere, so f^{-1} is holomorphic and $\left(f^{-1}\right)^{\prime}(w)=\frac{1}{f^{\prime}\left(f^{-1}(w)\right)}$ by the chain rule.) Since $f(0)=0$ and f is injective, $f^{-1}(0)=0$ which implies that $g(0)=0$. Also, $g^{\prime}(0)=\frac{i f^{\prime}(0)}{f^{\prime}(0)}=i$, so since $\left|g^{\prime}(0)\right|=1$, Schwarz lemma gives $g(z)=g^{\prime}(0) z=i z$, and so $f(i z)=i f(z)$.

