Complex Analysis, Fall 2017

Solutions to Problem Set 9

1. (b) Let $R=\{x+i y:-1 \leq x \leq 1-\epsilon, 0 \leq y \leq 1\} \subset \mathbf{C}$ with $\epsilon>0$ small. The function $f(z)=\frac{1}{z^{5}-1}$ is meromorphic with poles at $z=e^{2 \pi i k / 5} k=0,1, \ldots, 4$. Since $e^{2 \pi i k / 5}=\cos (2 \pi k / 5)+i \sin (2 \pi k / 5),-1 \leq \cos (2 \pi k / 5) \leq 1-\epsilon$ for $k=1,2,3,4$ and $0 \leq \sin (2 \pi k / 5) \leq 1$ for $k=0,1,2$, then poles of f in R are $e^{2 \pi i / 5}$ and $e^{4 \pi i / 5}$. We have

$$
\operatorname{Res}_{z=e^{2 \pi i / 5}}(f)=\lim _{z \rightarrow e^{2 \pi i / 5}} \frac{z-e^{2 \pi i / 5}}{z^{5}-1}=\frac{1}{5} e^{2 \pi i / 5} .
$$

and

$$
\operatorname{Res}_{z=e^{4 \pi i / 5}}(f)=\lim _{z \rightarrow e^{4 \pi i / 5}} \frac{z-e^{4 \pi i / 5}}{z^{5}-1}=\frac{1}{5} e^{4 \pi i / 5} .
$$

So by residue theorem

$$
\int_{\partial R} \frac{1}{z^{5}-1} d z=2 \pi i\left(\frac{1}{5} e^{2 \pi i / 5}+\frac{1}{5} e^{4 \pi i / 5}\right) .
$$

2. Let $g(z)=2 z^{5}+z+1$ and $f(z)=-6 z^{2}$. Then Rouche's theorem on $D_{1}(0)$ implies that $2 z^{6}-6 z^{2}+z+1$ has two zeros in $D_{1}(0)$ and no zero on the boundary of $D_{1}(0)$. $\left(|g|<|f|\right.$ on $\left.D_{1}(0)\right)$

Let now $g(z)=-6 z^{2}+z+1$ and $f(z)=2 z^{5}$. Then we apply Rouche's theorem to f, g, and $D_{2}(0)$, we see that $2 z^{6}-6 z^{2}+z+1$ has five zeros in $D_{2}(0)$ and no zero on the boundary of $D_{2}(0)$. So $2 z^{6}-6 z^{2}+z+1$ has 3 zeros in the annulus $1 \leq|z| \leq 2$.
3. (a) By the maximum modulus principle and the hypothesis on f we see that there exists $z_{0} \in \mathbf{D}$ such that $f\left(z_{0}\right) \in \mathbf{D}$. Let $g(z)=f(z)-f\left(z_{0}\right)$. Then

$$
|g(z)-f(z)|=\left|f\left(z_{0}\right)\right|<1=|f(z)|
$$

whenever $|z|=1$, so by Rouche's theorem f and g have the same number of zeros in D. Since g has at least one zero in D we get the desired result.
(b) It is enough to show that if $\left|w_{0}\right|<1$, then $g(z)=f(z)-w_{0}$ has a zero in \mathbf{D}. If $|z|=1$, then

$$
|g(z)-f(z)|=\left|w_{0}\right|<1=|f(z)|
$$

so by Rouche's theorem, f and g have the same number of zeros in D. By part (a) f has at least one zero, so g must have at least one zero as well.
5. If u is a harmonic function on an open set Ω, then locally around every $z_{0} \in \Omega$, there is a disk D such that $D \subset \Omega$. On D, u is the real part of a holomorphic function f, and f sends D to an open subset of C, so $u(\Omega)$ is the union of open sets and is therefore open.
7. Let $z=r e^{i \theta}, 0 \leq r<1$. Then

$$
\begin{aligned}
\frac{1+r e^{i \theta}}{1-r e^{i \theta}} & =(1+z)\left(1+z+z^{2}+\ldots\right) \\
& =1+2 \sum_{n=1}^{\infty} z^{n} \\
& =1+2 \sum_{n=1}^{\infty} r^{n} e^{i n \theta}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
P_{r}(\theta)=\operatorname{Re}\left(\frac{1+r e^{i \theta}}{1-r e^{i \theta}}\right) & =1+2 \sum_{n=1}^{\infty} r^{n} \cos n \theta \\
& =1+\sum_{n=1}^{\infty} r^{n}\left(e^{i n \theta}+e^{-i n \theta}\right)
\end{aligned}
$$

