Algebra II, Spring 2017

Problem Set 1
Due: January 26 in class

1. Show that if char $\mathrm{F} \neq 2$, then every extension of degree 2 over F is of the form $F(\sqrt{a})$ for some $a \in F$. Conclude that every degree 2 extension of F is Galois.
2. Let $\mathbf{C}(t)$ be the filed of rational functions over \mathbf{C}. Assume $f(t), g(t) \in \mathbf{C}[t]$ be two relatively prime polynomials, and set $\alpha=\frac{f(t)}{g(t)} \in \mathbf{C}(t)$. Assume $\alpha \notin \mathbf{C}$.
(a) Show that the polynomial $f(x)-\alpha g(x) \in \mathbf{C}[\alpha][x]$ is irreducible. $(\mathbf{C}[\alpha]$ is the ring generated by \mathbf{C} and α :

$$
\mathbf{C}[\alpha]=\left\{c_{0}+\cdots+c_{n} \alpha^{n} \mid c_{i} \in \mathbf{C}, n \geq 0\right\} .
$$

You may need to use the fact, proved in Homework 10 last semester, that α is not algebraic over C.)
(b) Show that minimal polynomial of t over $\mathbf{C}(\alpha)$ is $f(x)-\alpha g(x)$.
(c) Conclude that the degree of the extension $\mathbf{C}(\alpha) \subset \mathbf{C}(t)$ is equal to $\max \{\operatorname{deg} f, \operatorname{deg} g\}$.
3. Automorphisms of $\mathbf{C}(t)$ over \mathbf{C} : Let $\mathbf{C}(t)$ be the field of rational functions over C. Use question 2 to show that every automorphism $\sigma \in \operatorname{Aut}(\mathbf{C}(\mathrm{t}) / \mathbf{C})$ is given by $t \mapsto \frac{a t+b}{c t+d}$ where $a, b, c, d \in \mathbf{C}$ and $a d-b c \neq 0$. (so $\sigma(f(t))=f\left(\frac{a t+b}{c t+d}\right)$.)
4. Show that the fixed field of the automorphism $\sigma \in \operatorname{Aut}(\mathbf{C}(\mathrm{t}) / \mathbf{C})$ given by $\sigma(t)=$ $t+1$ is \mathbf{C}. Conclude that if G is the subgroup of $\operatorname{Aut}(\mathbf{C}(\mathrm{t}))$ generated by σ, then $G \neq \operatorname{Aut}\left(\mathbf{C}(\mathrm{t}) / \mathbf{C}(\mathrm{t})^{\mathrm{G}}\right)$.

