Algebra II, Spring 2017

Problem Set 1

Due: January 26 in class

1. Show that if char $F \neq 2$, then every extension of degree 2 over F is of the form $F(\sqrt{a})$ for some $a \in F$. Conclude that every degree 2 extension of F is Galois.

2. Let $\mathbf{C}(t)$ be the filed of rational functions over \mathbf{C} . Assume $f(t), g(t) \in \mathbf{C}[t]$ be two relatively prime polynomials, and set $\alpha = \frac{f(t)}{g(t)} \in \mathbf{C}(t)$. Assume $\alpha \notin \mathbf{C}$.

(a) Show that the polynomial $f(x) - \alpha g(x) \in \mathbf{C}[\alpha][x]$ is irreducible. ($\mathbf{C}[\alpha]$ is the ring generated by \mathbf{C} and α :

$$\mathbf{C}[\alpha] = \{c_0 + \dots + c_n \alpha^n \mid c_i \in \mathbf{C}, n \ge 0\}.$$

You may need to use the fact, proved in Homework 10 last semester, that α is not algebraic over **C**.)

- (b) Show that minimal polynomial of t over $\mathbf{C}(\alpha)$ is $f(x) \alpha g(x)$.
- (c) Conclude that the degree of the extension $\mathbf{C}(\alpha) \subset \mathbf{C}(t)$ is equal to max $\{\deg f, \deg g\}$.

3. Automorphisms of $\mathbf{C}(t)$ over \mathbf{C} : Let $\mathbf{C}(t)$ be the field of rational functions over \mathbf{C} . Use question 2 to show that every automorphism $\sigma \in \operatorname{Aut}(\mathbf{C}(t)/\mathbf{C})$ is given by $t \mapsto \frac{at+b}{ct+d}$ where $a, b, c, d \in \mathbf{C}$ and $ad - bc \neq 0$. (so $\sigma(f(t)) = f(\frac{at+b}{ct+d})$.)

4. Show that the fixed field of the automorphism $\sigma \in \operatorname{Aut}(\mathbf{C}(t)/\mathbf{C})$ given by $\sigma(t) = t + 1$ is **C**. Conclude that if *G* is the subgroup of $\operatorname{Aut}(\mathbf{C}(t))$ generated by σ , then $G \neq \operatorname{Aut}(\mathbf{C}(t)/\mathbf{C}(t)^{G})$.