Algebra II, Spring 2017

Solutions to Problem Set 1

2 (a). Assume $f(x)-\alpha g(x)=h_{1}(x) h_{2}(x)$ where $h_{1}, h_{2} \in \mathbf{C}[\alpha][x]$. Then h_{1} is a polynomial in α and x and hence can be written as

$$
h_{1}=p_{n}(x) \alpha^{n}+\cdots+p_{1}(x) \alpha+p_{0}(x)
$$

where the p_{i} are polynomials in $\mathbf{C}[x]$ and $p_{n} \neq 0$. Similarly $h_{2}(x)=q_{m}(x) \alpha^{m}+\cdots+$ $q_{1}(x) \alpha+q_{0}(x)$ where $q_{m} \neq 0$. So

$$
-g(x) \alpha+f(x)=\left(p_{n}(x) q_{m}(x)\right) \alpha^{m+n}+\cdots+p_{0}(x) q_{0}(x) .
$$

Since α is not algebraic over \mathbf{C} (Homework 10, Question 1, last semester), the above equality implies that the coefficients of α^{i} on both sides should be equal, so $m+n=1$. Assume $n=0$ and $m=1$. Then $h_{1}=p_{0}(x), h_{2}(x)=q_{1}(x) \alpha+q_{0}(x), g=-p_{0} q_{1}$, and $f=p_{0} q_{0}$. Since f and g are relatively prime, $p_{0} \in \mathbf{C}$, so h_{1} is a unit.
(b) Clearly t is a root of $f(x)-\alpha g(x)$, so it remain to show $f(x)-\alpha g(x)$ is irreducible. Since $\mathbf{C}(\alpha)$ is the field of fractions of $\mathbf{C}[\alpha]$, by a result from last semester this follows from part (a) if we show that $f(x)-\alpha g(x)$ is a primitive polynomial in $C[\alpha][x]$. Let $f(x)=a_{n} x^{n}+\cdots+a_{0}$ and $g(x)=b_{m} x^{m}+\cdots+b_{0}\left(b_{n}, a_{m} \neq 0\right)$. If $h \in \mathbf{C}[\alpha]$ is such that $h \mid a_{i}-\alpha b_{i}$ for all i, then $h \mid b_{j}\left(a_{i}-\alpha b_{i}\right)-b_{i}\left(a_{j}-\alpha b_{j}\right)=b_{j} a_{i}-b_{i} a_{j} \in \mathbf{C}$. So either there is i, j such that $h \mid b_{j} a_{i}-b_{i} a_{j} \neq 0$, so $h \in \mathbf{C}$ and is therefore a unit, or $b_{j} a_{i}-b_{i} a_{j}=0$ for all i, j, so $\frac{f(t)}{g(t)}=\frac{a_{m}}{b_{m}}$. So $\alpha \in \mathbf{C}$.
3. Suppose that $\sigma(t)=\frac{f(t)}{g(t)}$ where f and g are relatively prime, and let $\alpha=\frac{f(t)}{g(t)}$. Then $\sigma(\mathbf{C}(t)) \subset \mathbf{C}(\alpha)$, so $\mathbf{C}(\alpha)=\mathbf{C}(t)$, so $[\mathbf{C}(t): \mathbf{C}(\alpha)]=1$. Hence by question 2, $\operatorname{deg} f(t), \operatorname{deg} g(t) \leq 1$ and $\alpha=\frac{a t+b}{c t+d}$. Clearly $a d-b c \neq 0$, since otherwise $\alpha \in \mathbf{C}$.
4. If $f(t)$ and $g(t)$ are relatively prime and $\alpha=\frac{f(t)}{g(t)}$ is fixed by σ, then $\frac{f(t)}{g(t)}=\frac{f(t+1)}{g(t+1)}$, Let $c=\frac{f(0)}{g(0)}$. Then

$$
c=\frac{f(0)}{g(0)}=\frac{f(1)}{g(1)}=\frac{f(2)}{g(2)}=\ldots
$$

(whenever the denominator is not zero.), so $f(t)-c g(t)$ has infinitely many zeros and so is the zero polynomial, so $\alpha \in \mathbf{C}$.

