Algebra II, Spring 2017

Problem Set 2
Due: February 3

1. Let E be the splitting field of $f(x)=x^{4}-2 \in \mathbf{Q}[x]$ and G the Galois group of E / \mathbf{Q}. Describe the subfields of E corresponding to the following subgroups of G : $\langle g h\rangle,\left\langle g h^{3}\right\rangle$, and $\left\langle g, h^{2}\right\rangle$ (If $\rho=\sqrt[4]{2}$, then g is the automorphism which fixes ρ and sends i to $-i$, and h is the automorphism which fixes i and sends ρ to $i \rho$.)
2. Find the Galois group of the following polynomials.
(a) $x^{3}+x^{2}-2 x-1$ over \mathbf{Q}
(b) $x^{3}-10$ over $\mathbf{Q}(\sqrt{2})$
3. Suppose that $f(x) \in F[x]$ is an irreducible separable polynomial and E is the splitting field of f. Then show that the Galois group of E / F acts transitively on the roots of $f(x)$.
4. Let E / F be a finite Galois extension and $G=\operatorname{Gal}(\mathrm{E} / \mathrm{F})$. If $H_{1} \leq H_{2} \leq G$, then show that $H_{1} \unlhd H_{2}$ if and only if $E^{H_{1}}$ is a normal extension of $E^{H_{2}}$.
5. Let $f(x)=x^{4}+a x^{2}+b$ be an irreducible polynomial over \mathbf{Q}, with roots $\pm \alpha, \pm \beta$, and splitting field E.
(a) Show that $\operatorname{Gal}(\mathrm{E} / \mathbf{Q})$ is isomorphic to a subgroup of the Dihedral group of order $8, D_{8}$, and is therefore isomorphic to $\mathbf{Z}_{4}, \mathbf{Z}_{2} \times \mathbf{Z}_{2}$, or D_{8}.
(b) Show that if $\alpha \beta \in \mathbf{Q}$, then $G=\mathbf{Z}_{2} \times \mathbf{Z}_{2}$.
(c) Show that $\frac{\alpha}{\beta}-\frac{\beta}{\alpha} \in \mathbf{Q}$ if and only if $G=\mathbf{Z}_{4}$.
6. Show that if the Galois group of an irreducible polynomial of degree 3 in $\mathbf{Q}[x]$ is \mathbf{Z}_{3}, then all the roots of the polynomial are real.
