Algebra II, Spring 2017

Solutions to Problem Set 2

1. Note that $g h(i)=-i$ and $g h(\rho)=g(i \rho)=-i \rho$, so $g h(i \rho)=-\rho$ and

$$
g h(i \rho-\rho)=-\rho+i \rho .
$$

So $i \rho-\rho$ is fixed by $g h$. Let $\alpha=i \rho-\rho$. We claim that the fixed field of the subgroup $\{e, g h\}$ is $\mathbf{Q}(\alpha)$. To show this, it is enough to show the degree of $\mathbf{Q}(\alpha) / \mathbf{Q}$ is 4. This follows if we show α is not the root of a polynomial of degree 2 in $\mathbf{Q}[x]$. But if $f(x) \in \mathbf{Q}[x]$ is the minimal polynomial of α, then the complex conjugate of α, $\bar{\alpha}=-i \rho-\rho$, should be a root of f as well. If $f(x)$ were of degree 2 , then we would have $f(x)=(x-\alpha)(x-\bar{\alpha})=x^{2}-(\alpha+\bar{\alpha}) x+\alpha \bar{\alpha}$. But $\alpha+\bar{\alpha}=-2 \rho \notin \mathbf{Q}$, so f has to have degree 4. So $\mathbf{Q}(\alpha)$ is the fixed field of $\{e, g h\}$. Similarly the fixed field of $\left\{e, g h^{3}\right\}$ is $\mathbf{Q}(i \rho+\rho)$.

If $H=<g, h^{2}>=\left\{e, g, h^{2}, g h^{2}\right\}$, then $h(\rho)=i \rho$, so $h\left(\rho^{2}\right)=i \rho i \rho=-\rho^{2}$, so $h^{2}\left(\rho^{2}\right)=h\left(h\left(\rho^{2}\right)\right)=h\left(-\rho^{2}\right)=\rho^{2}$. Since ρ^{2} is fixed by g too, ρ^{2} is in E^{H}. The degree of E^{H} / \mathbf{Q} is the index of H in G which is 2 , and clearly $\mathbf{Q}\left(\rho^{2}\right) / \mathbf{Q}=\mathbf{Q}(\sqrt{2}) / \mathbf{Q}$ is a degree 2 extension, so $E^{H}=\mathbf{Q}(\sqrt{2})$.
2. We have $\Delta^{2}=-4 a^{3}-27 b^{2}$ for a cubic polynomial $x^{3}+a x+b$.
(a) $x^{3}+x^{2}-2 x-1=\left(x+\frac{1}{3}\right)^{3}+\left(x+\frac{1}{3}\right)\left(-\frac{7}{3}\right)-\frac{7}{27}$. So we look at the polynomial $y^{3}-\frac{7}{3} y-\frac{7}{27}$. So $\delta^{2}=49$ and $\delta \in \mathbf{Q}$, so the Galois group is \mathbf{Z}_{3}.
(b) $\delta^{2}=-2700$, and $\delta=30 \sqrt{3} \notin \mathbf{Q}\left(\sqrt{2}\right.$, so the Galois group is S_{3}.
3. We prove by induction that if $\phi: F \simeq F^{\prime}$ is a field isomorphism, $f(x) \in F[x]$ is an irreducible polynomial, $g=\phi(f) \in F^{\prime}[x], E$ is the splitting field of $f(x)$, and E^{\prime} is the splitting field of $g(x)$, then for every roots α of f and β of g there is an isomorphism $\psi: E \rightarrow E^{\prime}$ extending ϕ and sending α to β. We use induction on $[E: F]$. If $[E: F]=1$, there is nothing to prove. Assume $[E: F]=n$ and the statement is true when the degree of the extension is smaller than n. Let $m=\operatorname{deg} f=\operatorname{deg} g$. Then $F(\alpha)=\left\{c_{0}+c_{1} \alpha+\cdots+c_{m-1} \alpha^{m-1} \mid c_{i} \in F\right\}$ and $F^{\prime}(\beta)=\left\{d_{0}+d_{1} \beta+\cdots+d_{m-1} \beta^{m-1} \mid d_{i} \in\right.$ $\left.F^{\prime}\right\}$. It is easy to see that there is an isomorphism $\tilde{\phi}: F(\alpha) \rightarrow F^{\prime}(\beta)$ sending
$c_{0}+c_{1} \alpha+\cdots+c_{m-1} \alpha^{m-1}$ to $\phi\left(c_{0}\right)+\phi\left(c_{1}\right) \beta+\cdots+\phi\left(c_{m-1}\right) \beta^{m-1}$ (it is clear that this map is bijective and respects addition. to show it respects multiplication one can look at monomials of the form $c \alpha^{i}$.) Now since $E / F(\alpha)$ is also the splitting field of $f(x) \in F(\alpha)[x]$, the extension is Galois, so it is the splitting field of a polynomial $p(x)$. We set $q(x)=\tilde{\phi}(p)(x)$ and pick arbitrary roots of p and q. By induction hypothesis we can extend $\tilde{\phi}$ to an isomorphism $\psi: E \rightarrow E^{\prime}$.
4. We proved this in class for $H_{2}=G$. (in this case $E^{H_{2}}=E^{G}=F$.) The prove is exactly the same when H_{2} is an arbitrary subgroup of G.
5. (a) If G is the group of permutations of $S=\{\alpha,-\alpha, \beta,-\beta\}$ such that $\sigma(-x)=-x$ for every $x \in S$, then G is isomorphic to D_{8} (generated by an element of order 2: $\tau(\alpha)=-\alpha$ and $\tau(\beta)=-\beta$, and an element of order 4: $\rho(\alpha)=-\beta, \rho(\beta)=-\alpha$.) So $G=\left\{e, \tau, \rho, \rho^{2}, \rho^{3}, \tau \rho, \tau \rho^{2}, \tau \rho^{3}\right\}$ with $\rho^{4}=e, \tau^{2}=e$, and $\tau \rho=\rho^{-1} \tau$. Therefore G is isomorphic to D_{8}. Clearly $\operatorname{Gal}(\mathrm{E} / \mathbf{Q})$ is a subgroup of G. It can't be of order 2 , since the minimal polynomial of every root has degree 4 . The subgroups of order 4 or 8 in D_{8} are isomorphic to $\mathbf{Z}_{4}, \mathbf{Z}_{2} \times \mathbf{Z}_{2}$ or D_{8}.
(b) If $\alpha \beta=c \in \mathbf{Q}$, then for every $\sigma \in \operatorname{Gal}(\mathrm{E} / \mathbf{Q}), \sigma(\alpha \beta)=\alpha \beta$. So $\sigma(\beta)=\frac{\alpha \beta}{\sigma(\alpha)}$. Therefore σ is determined by the image of α and since there are at most 4 such possibilities for the image of $\alpha,|\operatorname{Gal}(\mathrm{E} / \mathbf{Q})| \leq 4$, and hence $|\operatorname{Gal}(\mathrm{E} / \mathbf{Q})|=4$ by part (a). If $\sigma(\alpha)=\alpha$, then $\sigma=i d$. If $\sigma(\alpha)=-\alpha$, then $\sigma^{2}=i d$. If $\sigma(\alpha)=\beta$, then $\sigma(\beta)=\alpha$, and therefore $\sigma^{2}=i d$. Similarly if $\sigma(\alpha)=-\beta, \sigma^{2}=i d$, so $G=\mathbf{Z}_{2} \times \mathbf{Z}_{2}$.
(c) Let $c=\frac{\alpha}{\beta}-\frac{\beta}{\alpha} \in \mathbf{Q}$. Then $\sigma(c)=c$ for very $\sigma \in \operatorname{Gal}(\mathrm{E} / \mathbf{Q})$. So again the image of β is determined by the image of α and therefore there are 4 possibilities for σ and $|\operatorname{Gal}(\mathrm{E} / \mathbf{Q})|=4$. If $\sigma(\alpha)=-\beta$, then $\sigma(\beta)$ has to be $-\alpha$ in order for c to be fixed, and it is easy to see in this case σ has order 4 , so the Galois group is \mathbf{Z}_{4}. Conversely if the Galois group if \mathbf{Z}_{4}, then since the only subgroup of D_{8} which is isomorphic to \mathbf{Z}_{4} is $\left\{e, \rho, \rho^{2}, \rho^{3}\right\}$, and ρ fixes c, every element of the Galois group fixes c, so $c \in \mathbf{Q}$.
6. Let $f(x) \in \mathbf{Q}[x]$ be an irreducible degree 3 polynomial, and let E be the splitting field of $f(x)$. Then $f(x)$ has at least one real root α and $\mathbf{Q}(\alpha) \subset E$. (every polynomial of odd degree over $\mathbf{R}[x]$ has at least one real root.) Since $f(x)$ is irreducible in $\mathbf{Q}[x]$, $\alpha \notin \mathbf{Q}$, so $[\mathbf{Q}(\alpha): \mathbf{Q}]=3$. Since $\operatorname{Gal}(\mathrm{E} / \mathbf{Q})=\mathbf{Z}_{3},[E: \mathbf{Q}]=3$, so $E=\mathbf{Q}(\alpha)$. Therefore, the other roots of f are generated by a real number over \mathbf{Q} and are therefore real.

