
Algebra II, Spring 2017

Solutions to Problem Set 2

1. Note that gh(i) = −i and gh(ρ) = g(iρ) = −iρ, so gh(iρ) = −ρ and

gh(iρ− ρ) = −ρ+ iρ.

So iρ − ρ is fixed by gh. Let α = iρ − ρ. We claim that the fixed field of the
subgroup {e, gh} is Q(α). To show this, it is enough to show the degree of Q(α)/Q
is 4. This follows if we show α is not the root of a polynomial of degree 2 in Q[x].
But if f(x) ∈ Q[x] is the minimal polynomial of α, then the complex conjugate of α,
ᾱ = −iρ − ρ, should be a root of f as well. If f(x) were of degree 2, then we would
have f(x) = (x − α)(x − ᾱ) = x2 − (α + ᾱ)x + αᾱ. But α + ᾱ = −2ρ 6∈ Q, so f
has to have degree 4. So Q(α) is the fixed field of {e, gh}. Similarly the fixed field of
{e, gh3} is Q(iρ+ ρ).

If H =< g, h2 >= {e, g, h2, gh2}, then h(ρ) = iρ, so h(ρ2) = iρiρ = −ρ2, so
h2(ρ2) = h(h(ρ2)) = h(−ρ2) = ρ2. Since ρ2 is fixed by g too, ρ2 is in EH . The degree
of EH/Q is the index of H in G which is 2, and clearly Q(ρ2)/Q = Q(

√
2)/Q is a

degree 2 extension, so EH = Q(
√

2).

2. We have ∆2 = −4a3 − 27b2 for a cubic polynomial x3 + ax+ b.
(a) x3 + x2 − 2x− 1 = (x+ 1

3)3 + (x+ 1
3)(−7

3)− 7
27 . So we look at the polynomial

y3 − 7
3y −

7
27 . So δ2 = 49 and δ ∈ Q, so the Galois group is Z3.

(b) δ2 = −2700, and δ = 30
√

3 6∈ Q(
√

2, so the Galois group is S3.

3. We prove by induction that if φ : F ' F ′ is a field isomorphism, f(x) ∈ F [x] is an
irreducible polynomial, g = φ(f) ∈ F ′[x], E is the splitting field of f(x), and E′ is the
splitting field of g(x), then for every roots α of f and β of g there is an isomorphism
ψ : E → E′ extending φ and sending α to β. We use induction on [E : F ]. If
[E : F ] = 1, there is nothing to prove. Assume [E : F ] = n and the statement is true
when the degree of the extension is smaller than n. Let m = deg f = deg g. Then
F (α) = {c0+c1α+· · ·+cm−1αm−1|ci ∈ F} and F ′(β) = {d0+d1β+· · ·+dm−1βm−1|di ∈
F ′}. It is easy to see that there is an isomorphism φ̃ : F (α) → F ′(β) sending
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c0 + c1α + · · · + cm−1α
m−1 to φ(c0) + φ(c1)β + · · · + φ(cm−1)β

m−1 (it is clear that
this map is bijective and respects addition. to show it respects multiplication one can
look at monomials of the form cαi.) Now since E/F (α) is also the splitting field of
f(x) ∈ F (α)[x], the extension is Galois, so it is the splitting field of a polynomial p(x).
We set q(x) = φ̃(p)(x) and pick arbitrary roots of p and q. By induction hypothesis
we can extend φ̃ to an isomorphism ψ : E → E′.

4. We proved this in class for H2 = G. (in this case EH2 = EG = F .) The prove is
exactly the same when H2 is an arbitrary subgroup of G.

5. (a) If G is the group of permutations of S = {α,−α, β,−β} such that σ(−x) = −x
for every x ∈ S, then G is isomorphic to D8 (generated by an element of order 2:
τ(α) = −α and τ(β) = −β, and an element of order 4: ρ(α) = −β, ρ(β) = −α.) So
G = {e, τ, ρ, ρ2, ρ3, τρ, τρ2, τρ3} with ρ4 = e, τ2 = e, and τρ = ρ−1τ . Therefore G is
isomorphic to D8. Clearly Gal(E/Q) is a subgroup of G. It can’t be of order 2, since
the minimal polynomial of every root has degree 4. The subgroups of order 4 or 8 in
D8 are isomorphic to Z4,Z2 × Z2 or D8.

(b) If αβ = c ∈ Q, then for every σ ∈ Gal(E/Q), σ(αβ) = αβ. So σ(β) = αβ
σ(α) .

Therefore σ is determined by the image of α and since there are at most 4 such
possibilities for the image of α, |Gal(E/Q)| ≤ 4, and hence |Gal(E/Q)| = 4 by part
(a). If σ(α) = α, then σ = id. If σ(α) = −α, then σ2 = id. If σ(α) = β, then
σ(β) = α, and therefore σ2 = id. Similarly if σ(α) = −β, σ2 = id, so G = Z2 × Z2.

(c) Let c = α
β −

β
α ∈ Q. Then σ(c) = c for very σ ∈ Gal(E/Q). So again the image

of β is determined by the image of α and therefore there are 4 possibilities for σ and
|Gal(E/Q)| = 4. If σ(α) = −β, then σ(β) has to be −α in order for c to be fixed,
and it is easy to see in this case σ has order 4, so the Galois group is Z4. Conversely
if the Galois group if Z4, then since the only subgroup of D8 which is isomorphic to
Z4 is {e, ρ, ρ2, ρ3}, and ρ fixes c, every element of the Galois group fixes c, so c ∈ Q.

6. Let f(x) ∈ Q[x] be an irreducible degree 3 polynomial, and let E be the splitting
field of f(x). Then f(x) has at least one real root α and Q(α) ⊂ E. (every polynomial
of odd degree over R[x] has at least one real root.) Since f(x) is irreducible in Q[x],
α 6∈ Q, so [Q(α) : Q] = 3. Since Gal(E/Q) = Z3, [E : Q] = 3, so E = Q(α).
Therefore, the other roots of f are generated by a real number over Q and are therefore
real.
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