Algebra II, Spring 2017

Problem Set 3

Due: February 14 in class

- 1. Let F be a finite field and let $F \subset E$ be a finite extension. Show that the extension E/F is Galois and its Galois group is cyclic.
- 2. Let p be a prime number, and let $E = \mathbf{F}_p(x, y)$ and $F = \mathbf{F}_p(x^p, y^p)$. Show that E/F is a finite extension which is not generated by one element over F.
- 3. Let $f(x) \in F[x]$ be an irreducible polynomial of degree 5 whose discriminant is a non-zero square in F. Find all possible Galois groups for its splitting field.
- 4. Let p be a prime number and $n \geq 2$ an integer.
 - (a) Show that there is an irreducible polynomial of degree n in $\mathbf{F}_p[x]$.
 - (b) Show that there is an irreducible polynomial of degree n in $\mathbf{Q}[x]$ with exactly n-2 real roots. (hint: let $g(x) = a_n x^n + \cdots + a_0$ be a reducible such polynomial. Since the roots of a polynomial depend continuously on its coefficients, a small perturbation of g(x) has also n-2 real roots: for sufficiently small $\epsilon \in \mathbf{Q}$, $h(x) = b_n x^n + \cdots + b_0 \in \mathbf{Q}[x]$ has also n-2 real roots if $|b_i a_i| < \epsilon$ for all i. Use this fact and the polynomial in part (a) to construct the desired polynomial.)
 - (c) Let $f(x) \in \mathbf{Q}[x]$ be an irreducible polynomial of degree p. Suppose that f(x) has exactly p-2 real roots. Show that the Galois group of the splitting field of f(x) is S_p .