Algebra II, Spring 2017

Solutions to Problem Set 3

1. Since F is finite, it is of characteristic p for some prime p. So $\mathbf{F}_p \subset F$. We proved in class that any finite extension of \mathbf{F}_p is Galois with a cyclic Galois group. So $\mathbf{F}_p \subset E$ is Galois, therefore, $F \subset E$ is also Galois and since $\operatorname{Gal}(E/F) \leq \operatorname{Gal}(E/\mathbf{F}_p)$, $\operatorname{Gal}(E/F)$ is cyclic too.

2. Clearly $\{x^i y^j \mid 0 \leq i, j \leq p-1\}$ form a basis for E over F, so $[E:F] = p^2$. To show E is not generated over F by one element, it is enough to show there are infinitely many intermediate fields. Clearly F has infinitely many elements. For every $\alpha \in F$, let $F_{\alpha} = F(x + \alpha y) \subset E$. Then if $\alpha \neq \beta \in F$, $F_{\alpha} \neq F_{\beta}$: if $x + \alpha y \in F_{\beta}$, then since $x + \beta y \in F_{\beta}$, we have $x, y \in F_{\beta}$, so $F_{\beta} = E$ which is not possible since $(x + \beta y)^p = x^p + \beta^p y^p \in F$, so $[F_{\beta} : F] \leq p$.

3. Let *E* be the splitting field of f(x) and *G* the Galois group of E/F. Our assumption implies that *G* is a subgroup of A_5 and therefore, its order divides 60. Also, 5||G|since if *a* is any root of f(x), $F \subset F(a) \subset E$, and [F(a) : F] = 5, so 5 | [E : F] = |G|. We also know that *G* is a transitive subgroup of A_5 . So |G| = 5, 10, 15, 20, 30, or 60.

The order of G cannot be 30 because A_5 has no subgroup of order 30 (a subgroup of order 30 is of index 2 in A_5 and so it is a normal subgroup, but A_5 is a simple group.) The order of G cannot be 15 because we have proved before that every group of order 15 is cyclic, but there is no element of order 15 in S_5 . We show that the order of G cannot be 20 either: Every group of order 20 has a subgroup H of order 4. The only permutation in S_5 of order 4 is a cycle (a b c d) which is an odd permutation. So H has to be isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$. Every even permutation of order 2 is S_5 is a product of two disjoint 2-cycles. Assume $H = \{e, g, h, gh\}$ and $g = (1 \ 2)(3 \ 4)$. Then h is also a product of two cycles (a b)(c d) none of which can contain 5, because if for example, (a b) = (1 5), then gh(1) = 5, gh(5) = 2, so gh will not be of order 2. So $\{a, b, c, d\} = \{1, 2, 3, 4\}$ and without loss of generality, we can assume $h = (1 \ 3)(2 \ 4)$ and therefore $gh = (1 \ 4)(2 \ 3)$. Now H also contains a subgroup of order 5 and therefore an element of order 5, σ . Then σ is a cycle of length 5, and without loss of generality, we can assume $\sigma = (1\ 2\ 3\ 4\ 5)$. Then $g\sigma = (2\ 4\ 5)$ is an element of order 3 which is in H, a contradiction.

So the only possibilities for the order of G are 5, 10, or 60. It easy to see that A_5 has transitive subgroups of order 5 (the subgroup generated by any cycle of order 5), order 10 (the subgroup generated by $(1\ 2)(4\ 5)$ and $(1\ 2\ 3\ 4\ 5)$). This subgroup is isomorphic to the Dihedral group. A_5 has no cyclic group of order 10 since there is no permutation of order 10 in S_5), and of order 60 (A_5).

Next we show that if G is any transitive subgroup of S_5 , it is the Galois group of an irreducible polynomial. We showed in class there is an irreducible polynomial of degree 5 f(x) over **Q** whose Galois group is S_5 . Let E be the splitting field of f(x) and F the fixed field of G. We have $\mathbf{Q} \subset F \subset E$ and $\operatorname{Gal}(E/F) = G$. So it is enough to show that E is the splitting field of an irreducible polynomial of degree 5 in F[x]. We show that f(x) as a polynomial in F[x] is irreducible. If $f(x) = g(x)h(x) \in F[x]$, then every element of the Galois group of E/F sends roots of g to roots of g and therefore a root of g cannot be sent to a root of h so $G = \operatorname{Gal}(E/F)$ cannot be transitive. So our assumption on G implies that f(x) is irreducible considered as a polynomial in F[x], and obviously E is the splitting field of $f(x) \in F[x]$. Therefore all the three groups \mathbf{Z}_5 , D_{10} and A_5 can be the Galois group of an irreducible polynomial of degree 5.

4. (a) We have shown that for every n, the splitting field E of $x^{p^n} - x \in \mathbf{F}_p[x]$ is an extension of degree n over \mathbf{F}_p . If α is a generator of the group F^{\times} , and if $f(x) \in \mathbf{F}_p[x]$ is the minimal polynomial of α , then f(x) is an irreducible polynomial of degree equal to the degree of $[\mathbf{F}_p(\alpha) : \mathbf{F}_p] = [E : \mathbf{F}_p] = n$.

(b) Let $g(x) = a_n x^n + \cdots + a_0 \in \mathbb{Z}[x]$ be a (possibly reducible) polynomial of degree n with exactly n - 2 real roots. Let $\epsilon > 0$ be so that for every polynomial $h(x) = b_n x^n + \cdots + b_0 \in \mathbb{Q}[x]$ such that $|b_i - a_i| < \epsilon$ for all i, then h(x) has also n - 2 real roots. Let $f(x) = c_n x^n + \cdots + c_0$ ($0 \le c_i \le p - 1$) be the irreducible polynomial constructed in part (a). Then for every i, there is $0 \le m_i < p$ such that $a_i - m_i = c_i \mod p$. So the polynomial $\sum_{i=0}^n (a_i - m_i) x^i$ is irreducible since it is irreducible mod p. Pick N large enough such that $\frac{p}{N} < \epsilon$. Then since $\sum_{i=0}^n \frac{a_i}{N} x^i$ has exactly n - 2 real roots, by our choice of ϵ ,

$$\sum_{i=0}^{n} \frac{a_i - m_i}{N} x^i \in \mathbf{Q}[x]$$

has exactly n-2 real roots. It is also irreducible since $\sum_{i=0}^{n} (a_i - m_i) x^i$ is irreducible.

(c) The same argument that we used in class to do the case p = 5 shows the statement.