
Algebra II, Spring 2017

Solutions to Problem Set 3

1. Since F is finite, it is of characteristic p for some prime p. So Fp ⊂ F . We proved
in class that any finite extension of Fp is Galois with a cyclic Galois group. So Fp ⊂ E
is Galois, therefore, F ⊂ E is also Galois and since Gal(E/F) ≤ Gal(E/Fp), Gal(E/F)
is cyclic too.

2. Clearly {xiyj | 0 ≤ i, j ≤ p − 1} form a basis for E over F , so [E : F ] = p2.
To show E is not generated over F by one element, it is enough to show there are
infinitely many intermediate fields. Clearly F has infinitely many elements. For every
α ∈ F , let Fα = F (x + αy) ⊂ E. Then if α 6= β ∈ F , Fα 6= Fβ: if x + αy ∈ Fβ,
then since x + βy ∈ Fβ, we have x, y ∈ Fβ, so Fβ = E which is not possible since
(x+ βy)p = xp + βpyp ∈ F , so [Fβ : F ] ≤ p.

3. Let E be the splitting field of f(x) and G the Galois group of E/F . Our assumption
implies that G is a subgroup of A5 and therefore, its order divides 60. Also, 5||G|
since if a is any root of f(x), F ⊂ F (a) ⊂ E, and [F (a) : F ] = 5, so 5 | [E : F ] = |G|.
We also know that G is a transitive subgroup of A5. So |G| = 5, 10, 15, 20, 30, or 60.

The order of G cannot be 30 because A5 has no subgroup of order 30 (a subgroup
of order 30 is of index 2 in A5 and so it is a normal subgroup, but A5 is a simple
group.) The order of G cannot be 15 because we have proved before that every group
of order 15 is cyclic, but there is no element of order 15 in S5. We show that the order
of G cannot be 20 either: Every group of order 20 has a subgroup H of order 4. The
only permutation in S5 of order 4 is a cycle (a b c d) which is an odd permutation.
So H has to be isomorphic to Z2 × Z2. Every even permutation of order 2 is S5 is a
product of two disjoint 2-cycles. Assume H = {e, g, h, gh} and g = (1 2)(3 4). Then
h is also a product of two cycles (a b)(c d) none of which can contain 5, because if
for example, (a b) = (1 5), then gh(1) = 5, gh(5) = 2, so gh will not be of order 2. So
{a, b, c, d} = {1, 2, 3, 4} and without loss of generality, we can assume h = (1 3)(2 4)
and therefore gh = (1 4)(2 3). Now H also contains a subgroup of order 5 and
therefore an element of order 5, σ. Then σ is a cycle of length 5, and without loss of
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generality, we can assume σ = (1 2 3 4 5). Then gσ = (2 4 5) is an element of order
3 which is in H, a contradiction.

So the only possibilities for the order of G are 5, 10, or 60. It easy to see that
A5 has transitive subgroups of order 5 (the subgroup generated by any cycle of order
5), order 10 (the subgroup generated by (1 2)(4 5) and (1 2 3 4 5). This subgroup is
isomorphic to the Dihedral group. A5 has no cyclic group of order 10 since there is
no permutation of order 10 in S5), and of order 60 (A5).

Next we show that if G is any transitive subgroup of S5, it is the Galois group of
an irreducible polynomial. We showed in class there is an irreducible polynomial of
degree 5 f(x) over Q whose Galois group is S5. Let E be the splitting field of f(x) and
F the fixed field of G. We have Q ⊂ F ⊂ E and Gal(E/F) = G. So it is enough to
show that E is the splitting field of an irreducible polynomial of degree 5 in F [x]. We
show that f(x) as a polynomial in F [x] is irreducible. If f(x) = g(x)h(x) ∈ F [x], then
every element of the Galois group of E/F sends roots of g to roots of g and therefore
a root of g cannot be sent to a root of h so G = Gal(E/F) cannot be transitive. So
our assumption on G implies that f(x) is irreducible considered as a polynomial in
F [x], and obviously E is the splitting field of f(x) ∈ F [x]. Therefore all the three
groups Z5, D10 and A5 can be the Galois group of an irreducible polynomial of degree
5.

4. (a) We have shown that for every n, the splitting field E of xp
n − x ∈ Fp[x] is an

extension of degree n over Fp. If α is a generator of the group F×, and if f(x) ∈ Fp[x]
is the minimal polynomial of α, then f(x) is an irreducible polynomial of degree equal
to the degree of [Fp(α) : Fp] = [E : Fp] = n.

(b) Let g(x) = anx
n + · · · + a0 ∈ Z[x] be a (possibly reducible) polynomial of

degree n with exactly n − 2 real roots. Let ε > 0 be so that for every polynomial
h(x) = bnx

n + · · ·+ b0 ∈ Q[x] such that |bi− ai| < ε for all i, then h(x) has also n− 2
real roots. Let f(x) = cnx

n + · · ·+ c0 (0 ≤ ci ≤ p− 1) be the irreducible polynomial
constructed in part (a). Then for every i, there is 0 ≤ mi < p such that ai −mi = ci
mod p. So the polynomial

∑n
i=0(ai −mi)x

i is irreducible since it is irreducible mod
p. Pick N large enough such that p

N < ε. Then since
∑n

i=0
ai
N x

i has exactly n−2 real
roots, by our choice of ε,

n∑
i=0

ai −mi

N
xi ∈ Q[x]

has exactly n−2 real roots. It is also irreducible since
∑n

i=0(ai−mi)x
i is irreducible.

(c) The same argument that we used in class to do the case p = 5 shows the
statement.
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