Algebra II, Spring 2017

Problem Set 4

Due: February 28 in class

1. Trace map: Let E / F be a finite extension. For $\alpha \in E$, the trace of α, denoted by $T(\alpha)$, is defined as the trace of the F-linear map

$$
L_{\alpha}: E \rightarrow E, \quad L_{\alpha}(x)=\alpha x .
$$

So for every $\alpha \in E, T(\alpha) \in F$.
(a) Show that if E / F is a finite Galois extension with Galois group G, then

$$
T(\alpha)=\sum_{\sigma \in G} \sigma(\alpha) .
$$

(b) Use independence of characters to show that the map T is not identically zero.
2. Show that if E / F is a Galois extension with cyclic group $G=\langle\sigma\rangle$, then

$$
\operatorname{Kernel}(T)=\{\alpha \in E \mid \alpha=\beta-\sigma(\beta) \text { for some } \beta \in E\} .
$$

(This is the additive version of Hilbert's Theorem 90).

3. Let F be a field of characteristic p.

(a) Let $f(x)=x^{p}-x-c$ be a polynomial over F, and let E be the splitting field of $f(x)$. If α is a root of $f(x)$ in E, then show that every root of $f(x)$ is of the form $\alpha+j$, for $0 \leq j<p$.
(b) Assume L / F is a Galois extension of order p with cyclic Galois group G. Use Problem 2 to prove that $L=F(\alpha)$ for some $\alpha \in L$ such that α is a root of a polynomial of the form $x^{p}-x-c \in F[x]$.
4. This exercise proves a reduction step we took when we showed the Galois group of a polynomial solvable by radicals is a solvable group.

Let F be a field of characteristic zero and let $f(x)$ be a polynomial over F. Let

$$
F=F_{0} \subset F_{1} \subset \cdots \subset F_{m}
$$

be a tower of fields such that

- $F_{i}=F_{i-1}\left(\alpha_{i}\right)$, with $\alpha_{i}^{n_{i}} \in F_{i-1}$ for some α_{i} and $n_{i} \geq 1$.
- $f(x)$ splits in F_{m}.

Then show that there is such a tower with the additional property that F_{m} is the splitting field of a polynomial over F. (Hint: Let f_{i} be the minimal polynomial of α_{i} over F, and consider the splitting field of $f_{1} \ldots f_{m}$.)
5. Use Hilbert Theorem 90 to find the rational solutions of the equation $x^{2}+d y^{2}=1$ where d is a positive integer.

