Algebra II, Spring 2017

Solutions to Problem Set 4

1. (a) Let $f(x)$ be the minimal polynomial of α over F and $p(x)$ its characteristic polynomial, $p(x)=\operatorname{det}\left(x I-L_{\alpha}\right)$. Then $T(\alpha)$ is the sum of roots of $p(x)$. On the other hand, we have seen in class that $p(x)=f(x)^{[E: F(\alpha)]}$, and for every root β of $f(x)$, there are exactly $[E: F(\alpha)]$ automorphisms which send α to β. So if $\alpha=\alpha_{1}, \ldots, \alpha_{n}$ are the roots of $f(x)$, then the sum of roots of $p(x)$ is exactly

$$
\sum_{\sigma \in G} \sigma(\alpha)
$$

so we get the desired equality.
(b) Let $G=\left\{\sigma_{1}, \ldots, \sigma_{k}\right\}$. Then each σ_{i} is a character $E^{\times} \rightarrow E^{\times}$. So by the theorem on independence of characters, a linear combination of the σ_{i} is identically equal to zero only if all the coefficients are zero. Apply this to the linear combination $\sigma_{1}+\cdots+\sigma_{k}$.
2. Let $|G|=n$. It is clear by part (a) of Question 1 that $T(\sigma(\alpha))=T(\alpha)$, so $\beta-\sigma(\beta)$ is in the kernel of T for every β. Assume now that α is in the kernel of T. Follow the same method to prove the multiplicative version of Hilbert's Theorem 90: by part (b) of Question 1, there is $x \in E$ such that $x+\sigma(x)+\cdots+\sigma^{n-1}(x)=T(x) \neq 0$. Now let

$$
\gamma=c_{0} x+c_{1} \sigma(x)+\cdots+c_{n-1} \sigma^{n-1}(x)
$$

where $c_{i}=\alpha+\sigma(\alpha)+\cdots+\sigma^{i}(\alpha)$. So $\sigma\left(c_{i}\right)=c_{i+1}-\alpha$ for $0 \leq i \leq n-1$ (we let $c_{n}:=c_{0}=\alpha$.) Then

$$
\sigma(\gamma)-\gamma=\sum_{i=0}^{n-1}\left(\sigma\left(c_{i}\right)-c_{i+1}\right) \sigma^{i+1}(x)=-\alpha T(x)
$$

But since $T(x) \in F$, and is nonzero, if we set $\beta=\frac{-\gamma}{T(x)}$, we get

$$
\sigma(\beta)-\beta=\alpha
$$

3. (a) In a field of characteristic $p,(a+b)^{p}=a+b$. Also if $\mathbf{F}_{p} \subset F$, and if $j \in \mathbf{F}_{p}$, then $j^{p}=j$. So if $\alpha^{p}-\alpha-x=0$, then $(\alpha+j)^{p}-(\alpha+j)-c=\alpha^{p}+j^{p}-\alpha-j-c=j^{p}-j=0$. Since $f(x)$ has at most p distinct roots, every root should be of the form $\alpha+j$ for some $0 \leq j \leq p-1$.
(b) Let G be generated by σ. Note that for any $c \in F$, by part (a) of Question 1, $T(c)=p c=0$, in particular $T(1)=0$. So By Question 2, there is $\beta \in L$ such that

$$
1=\beta-\sigma(\beta) .
$$

Therefore $\sigma(\beta)=\beta+1$, and so $\sigma^{i}(\beta)=\beta+i$ for every $0 \leq i \leq p-1$. So if $f(x)$ is the minimal polynomial of β, then $\beta+i$ is a root of $f(x)$ for every $0 \leq i \leq p-1$. If $m=\operatorname{deg} f(x)$, then $m=[F(\alpha): F] \leq[L: F]=p$, so $m=p, L=F(\beta)$, and the set of roots of f is $\{\beta, \beta+1, \ldots, \beta+(p-1)\}$. It remains to show $\beta^{p}-\beta \in F$. We show $\beta^{p}-\beta$ is the fixed field of G : for every $\rho \in G, \rho=\sigma^{i}$ for some $0 \leq i \leq p-1$, so
$\rho\left(\beta^{p}-\beta\right)=\rho(\beta)^{p}-\rho(\beta)=\left(\sigma^{i}(\beta)\right)^{p}-\sigma^{i}(\beta)=(\beta+i)^{p}-(\beta+i)=\beta^{p}+i^{p}-\beta-i=\beta^{p}-\beta$.
4. Suppose that

$$
F=F_{0} \subset F_{1} \subset \cdots \subset F_{m}
$$

is a tower which satisfies the two given properties: f splits in F_{m} and $F_{i}=F_{i-1}\left(\alpha_{i}\right)$ with $\alpha_{i}^{n_{i}} \in F_{i-1}$. Let f_{i} be the minimal polynomial of α_{i} over F and let L_{i} be the splitting field of $f_{1} f_{2} \ldots f_{i}$. Then we have a tower

$$
F \subset L_{1} \subset \cdots \subset L_{m}
$$

where each L_{i} is Galois over F, and f splits in L_{m}. So it is enough to show we can refine the inclusion $L_{i-1} \subset L_{i}$ to get a tower of field extensions such that each is obtained from the previous one by adding a root of an element. Let $\alpha_{i}=\beta_{1}, \beta_{2}, \ldots \beta_{m_{i}}$ be the roots of the polynomial f_{i}. We have a tower

$$
L_{i-1} \subset L_{i-1}\left(\beta_{1}\right) \subset \cdots \subset L_{i-1}\left(\beta_{1}, \ldots, \beta_{m_{i}}\right)=L_{i} .
$$

Note that for each $\beta_{j}, 1 \leq j \leq m_{i}$, there is an automorphism $\sigma \in \operatorname{Gal}\left(\mathrm{L}_{\mathrm{m}} / \mathrm{F}\right)$ such that $\sigma\left(\alpha_{i}\right)=\beta_{j}$ (since $\alpha_{i}=\beta_{1}$ and β_{j} are roots of the same irreducible polynomial in $F[x]$). Since $\alpha_{i}^{n_{i}} \in F_{i-1}$ by our original assumption, and since $F_{i-1} \subset L_{i-1}$ (by definition), $\beta_{j}^{n_{i}}=\sigma\left(\alpha_{i}^{n_{i}}\right) \in \sigma\left(F_{i-1}\right) \subset \sigma\left(L_{i-1}\right)$. Since L_{i-1} is Galois over F, σ sends elements of L_{i-1} to elements of L_{i-1}, hence $\beta_{j}^{n_{i}} \in L_{i-1} \subset L\left(\beta_{1}, \ldots, \beta_{j-1}\right)$.
5. If we consider the quadratic extension $\mathbf{Q} \subset \mathbf{Q}(\sqrt{-d})$, then we have the norm map

$$
N(a+b \sqrt{-d})=a^{2}+d b^{2},
$$

so we are looking for all elements $x+y \sqrt{-d}$ with norm 1. By Hilbert theorem 90, they are of the form $x+y \sqrt{-d}=\frac{\sigma(\beta)}{\beta}$ for some $\beta=m+n \sqrt{-d}$ where $\sigma(m+n \sqrt{-d})=$ $m-n \sqrt{-d}$. So

$$
x+y \sqrt{-d}=\frac{m-n \sqrt{-d}}{m+n \sqrt{-d}}=\frac{m^{2}-d n^{2}-2 m n \sqrt{-d}}{m^{2}+d n^{2}}=\frac{m^{2}-d n^{2}}{m^{2}+d n^{2}}+\frac{-2 m n}{m^{2}+d n^{2}} \sqrt{-d} .
$$

so

$$
x=\frac{m^{2}-d n^{2}}{m^{2}+d n^{2}}, \quad y=\frac{-2 m n}{m^{2}+d n^{2}}
$$

for rational numbers m, n.

