
Algebra II, Spring 2017

Solutions to Problem Set 4

1. (a) Let f(x) be the minimal polynomial of α over F and p(x) its characteristic
polynomial, p(x) = det(xI−Lα). Then T (α) is the sum of roots of p(x). On the other
hand, we have seen in class that p(x) = f(x)[E:F (α)], and for every root β of f(x),
there are exactly [E : F (α)] automorphisms which send α to β. So if α = α1, . . . , αn
are the roots of f(x), then the sum of roots of p(x) is exactly∑

σ∈G
σ(α)

so we get the desired equality.
(b) Let G = {σ1, . . . , σk}. Then each σi is a character E× → E×. So by the

theorem on independence of characters, a linear combination of the σi is identically
equal to zero only if all the coefficients are zero. Apply this to the linear combination
σ1 + · · ·+ σk.

2. Let |G| = n. It is clear by part (a) of Question 1 that T (σ(α)) = T (α), so β−σ(β)
is in the kernel of T for every β. Assume now that α is in the kernel of T . Follow the
same method to prove the multiplicative version of Hilbert’s Theorem 90: by part (b)
of Question 1, there is x ∈ E such that x+σ(x) + · · ·+σn−1(x) = T (x) 6= 0. Now let

γ = c0x+ c1σ(x) + · · ·+ cn−1σ
n−1(x)

where ci = α + σ(α) + · · · + σi(α). So σ(ci) = ci+1 − α for 0 ≤ i ≤ n − 1 (we let
cn := c0 = α.) Then

σ(γ)− γ =
n−1∑
i=0

(σ(ci)− ci+1)σ
i+1(x) = −αT (x).

But since T (x) ∈ F , and is nonzero, if we set β = −γ
T (x) , we get

σ(β)− β = α.
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3. (a) In a field of characteristic p, (a+b)p = a+b. Also if Fp ⊂ F , and if j ∈ Fp, then
jp = j. So if αp−α−x = 0, then (α+j)p−(α+j)−c = αp+jp−α−j−c = jp−j = 0.
Since f(x) has at most p distinct roots, every root should be of the form α + j for
some 0 ≤ j ≤ p− 1.

(b) Let G be generated by σ. Note that for any c ∈ F , by part (a) of Question 1,
T (c) = p c = 0, in particular T (1) = 0. So By Question 2, there is β ∈ L such that

1 = β − σ(β).

Therefore σ(β) = β + 1, and so σi(β) = β + i for every 0 ≤ i ≤ p − 1. So if f(x) is
the minimal polynomial of β, then β + i is a root of f(x) for every 0 ≤ i ≤ p− 1. If
m = deg f(x), then m = [F (α) : F ] ≤ [L : F ] = p, so m = p, L = F (β), and the set
of roots of f is {β, β + 1, . . . , β + (p− 1)}. It remains to show βp − β ∈ F . We show
βp − β is the fixed field of G: for every ρ ∈ G, ρ = σi for some 0 ≤ i ≤ p− 1, so

ρ(βp−β) = ρ(β)p−ρ(β) = (σi(β))p−σi(β) = (β+i)p−(β+i) = βp+ip−β−i = βp−β.

4. Suppose that
F = F0 ⊂ F1 ⊂ · · · ⊂ Fm

is a tower which satisfies the two given properties: f splits in Fm and Fi = Fi−1(αi)
with αni

i ∈ Fi−1. Let fi be the minimal polynomial of αi over F and let Li be the
splitting field of f1f2 . . . fi. Then we have a tower

F ⊂ L1 ⊂ · · · ⊂ Lm

where each Li is Galois over F , and f splits in Lm. So it is enough to show we
can refine the inclusion Li−1 ⊂ Li to get a tower of field extensions such that each is
obtained from the previous one by adding a root of an element. Let αi = β1, β2, . . . βmi

be the roots of the polynomial fi. We have a tower

Li−1 ⊂ Li−1(β1) ⊂ · · · ⊂ Li−1(β1, . . . , βmi) = Li.

Note that for each βj , 1 ≤ j ≤ mi, there is an automorphism σ ∈ Gal(Lm/F) such
that σ(αi) = βj (since αi = β1 and βj are roots of the same irreducible polynomial
in F [x]). Since αni

i ∈ Fi−1 by our original assumption, and since Fi−1 ⊂ Li−1 (by
definition), βni

j = σ(αni
i ) ∈ σ(Fi−1) ⊂ σ(Li−1). Since Li−1 is Galois over F , σ sends

elements of Li−1 to elements of Li−1, hence βni
j ∈ Li−1 ⊂ L(β1, . . . , βj−1).
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5. If we consider the quadratic extension Q ⊂ Q(
√
−d), then we have the norm map

N(a+ b
√
−d) = a2 + db2,

so we are looking for all elements x + y
√
−d with norm 1. By Hilbert theorem 90,

they are of the form x+y
√
−d = σ(β)

β for some β = m+n
√
−d where σ(m+n

√
−d) =

m− n
√
−d. So

x+ y
√
−d =

m− n
√
−d

m+ n
√
−d

=
m2 − dn2 − 2mn

√
−d

m2 + dn2
=
m2 − dn2

m2 + dn2
+
−2mn

m2 + dn2

√
−d.

so

x =
m2 − dn2

m2 + dn2
, y =

−2mn

m2 + dn2

for rational numbers m,n.
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