Algebra II, Spring 2017

Problem Set 5

Due: March 9 in class

1. If $F \subset E \subset K$ is a tower of fields such that the transcendence degree of K over F is finite, then show

$$
\text { tr. deg. } K / F=\operatorname{tr} . \operatorname{deg} . K / E+\operatorname{tr} . \operatorname{deg} . E / F .
$$

2. Let $F \subset E \subset K$ be a tower of fields.
(a) If E is algebraic over F and A is a subset of K which is algebraically independent over F, then show that A is algebraically independent over E.
(b) Use part (a) to show that if K is finitely generated over F, then E is finitely generated over F.
3. Let $f(x)=x^{4}+2 x^{2}+x+3 \in \mathbf{Q}[x]$. Show that f is irreducible with no repeated roots $\bmod 2$, and it has an irreducible factor of degree $3 \bmod 3$. Conclude that the Galois group of $f(x)$ is S_{4}.
4. Let $f(x)=x^{6}+22 x^{5}-9 x^{4}+12 x^{3}-37 x^{2}-29 x-15 \in Q[x]$. Show that the Galois group of $f(x)$ is S_{6} by looking at $f(x) \bmod 2$ and $\bmod 5$. (you can use the following fact without proving it: a subgroup of S_{6} which contains a 6 -cycle and a transposition is S_{6}.)
5. If F is a finite field, and \bar{F} is its algebraic closure, then show that $\operatorname{Aut}(\overline{\mathrm{F}} / \mathrm{F})$ is abelian.
