Algebra II, Spring 2017

Solutions to Problem Set 5

1. Assume the transcendence degree of K / F is m. Since we have shown that every algebraically independent set of K over F can be extended to a transcendence basis, and since we know any transcendence basis of K / F has m elements, it follows that the transcendence degrees of E / F and K / F are finite.

Let $A=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be a transcendence basis of E / F and $B=\left\{\beta_{1}, \ldots, \beta_{m}\right\}$ a transcendence basis of K / E. Then we show $A \cup B$ is a transcendence basis for K / F. If elements of $A \cup B$ are algebraically dependent, then there are polynomials $f_{d_{1}, \ldots, d_{m}} \in F\left[x_{1}, \ldots, x_{n}\right]$ not all equal to zero such that

$$
\sum_{\left(d_{1}, \ldots, d_{m}\right)} f_{d_{1}, \ldots, d_{m}}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \beta_{1}^{d_{1}} \ldots \beta_{m}^{d_{m}}=0
$$

But this contradicts the fact that the β_{i} are algebraically independent over E.
We also need to show K is algebraic over $F\left(\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{m}\right)$. This is true since K is algebraic over $E\left(\beta_{1}, \ldots, \beta_{m}\right)$ and $E\left(\beta_{1}, \ldots, \beta_{m}\right)$ is algebraic over $F\left(\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{m}\right)$.
2. (a) It is enough to show that if A is a finite subset of K which is algebraically independent over F, then A is algebraically independent over E. Assume to the contrary, and set $A=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. Then there is i such that $\left\{\alpha_{1}, \ldots, \alpha_{i}\right\}$ is algebraically independent over E but $\left\{\alpha_{1}, \ldots, \alpha_{i+1}\right\}$ is algebraically dependent over E. Then by the lemma proved in class, α_{i+1} is algebraic over $E\left(\alpha_{1}, \ldots, \alpha_{i}\right)$. But then since E is algebraic over $F, E\left(\alpha_{1}, \ldots, \alpha_{i}\right)$ is algebraic over $F\left(\alpha_{1}, \ldots, \alpha_{i}\right)$, so α_{i+1} is algebraic over $F\left(\alpha_{1}, \ldots, \alpha_{i}\right)$ contradicting the assumption that A is algebraically independent over F.
(b) Since K is finitely generated over F, it has a finite transcendence degree over F (we proved this in class.), and therefore E has also a finite transcendence degree over F. Let A be a finite transcendence basis for E over F. Then replacing F by $F(A)$ we can assume from the beginning that E is algebraic over F. (since if E is finitely generated over $F(A)$, it is also finitely generated over F.)

So assume E / F is algebraic. To show E / F is finitely generated, it is enough to show E / F is a finite extension. Let B a finite transcendence degree for K over F. Then $K / F(B)$ is algebraic and also finitely generated, therefore it is a finite extension. Assume $m=[K: F(B)]$. We show $[E: F] \leq m$. If $\gamma_{1}, \ldots, \gamma_{r}$ is a basis for E over F, then the γ_{i} are linearly independent as elements of K over $F(B)$: if $c_{1} \gamma_{1}+\cdots+c_{r} \gamma_{r}=0, c_{i} \in F(B)$, then after multiplying by the common denominator, we get a linear relation between the γ_{i} where the coefficients come from $F[B]$. But this implies that B is algebraically dependent over E which is not possible by part (a), so $r \leq m$.
3. $f(x)=x^{4}+x+1 \bmod 2$. Obviously this polynomial does not have any root in \mathbf{F}_{2}, and since the only irreducible polynomial of degree 2 in \mathbf{F}_{2} is $x^{2}+x+1$ and $\left(x^{2}+x+1\right)^{2} \neq x^{4}+x+1$, we conclude that $f(x)$ is irreducible modulo 2 . Since $f^{\prime}(x)=1 \neq 0$, we conclude that the roots of $f(x)$ are distinct in $\overline{\mathbf{F}}_{2}$. So the Galois group contains a 4 -cycle. On the other hand, $f(x)=x^{4}+2 x^{2}+x=x\left(x^{3}+2 x+1\right)$ $\bmod 3$, and $x^{3}+2 x+1$ is irreducible in \mathbf{F}_{3} since it has no root $\bmod 3$, so the Galois group has a 3 -cycle. (note that $\left(x^{3}+2 x+1\right)^{\prime} \neq 0$, so the roots of $f(x) \bmod 3$ are all distinct. The only subgroup of S_{4} which contains a 3 -cycle and a 4 -cycle is S_{4}.
4. We have $f(x)=x(x-1)(x+1)(x+2)\left(x^{2}+2\right) \bmod 5$, and $x^{2}+2$ is irreducible with a non-zero derivative $\bmod 5$, so the roots of $f(x)$ are all distinct in $\overline{\mathbf{F}}_{5}$, so the Galois group contains a 2-cycle. On there other hand, $f(x)=x^{6}+x^{4}+x^{2}+x+1$ $\bmod 2$. We claim that $f(x)$ is irreducible mod 2. Clearly $f(x)$ has no root \mathbf{F}_{2}, so if it is irreducible, it has to have a factor of degree 2 or a factor of degree 3. The only irreducible polynomial of degree $2 \bmod 2$ is $x^{2}+x+1$ and the only irreducible polynomials of degree $3 \bmod 2$ are $x^{3}+x+1$ and $x^{3}+x^{2}+1$, and it is easy to see that none of these 3 polynomials divide $f(x) \bmod 2$, so $f(x)$ is irreducible, and therefore the Galois group contains a 6 -cycle.
5. Let $\sigma_{1}, \sigma_{2} \in \operatorname{Aut}(\overline{\mathrm{~F}} / \mathrm{F})$ and $\alpha \in \bar{F}$. Then α is algebraic over F, so $F(\alpha)$ is a finite extension of F. Since every finite extension of a finite field is a Galois extension, $F(\alpha)$ is a Galois extension of F, and therefore, σ_{1} and σ_{2} give automorphisms of $F(\alpha)$. (in other words, every element β of $F(\alpha)$ should be mapped to another element of $F(\alpha)$ by σ_{1} and σ_{2} since the minimal polynomial of β splits in $F(\alpha)$.) Since the Galois group of every finite extension of a finite field is abelian, $\sigma_{1} \sigma_{2}(\alpha)=\sigma_{2} \sigma_{1}(\alpha)$.

