Algebra II, Spring 2017

Problem Set 6
Due: March 28 in class

In Questions 1-3 A is an integral domain, K is the quotient field of A, and we assume A is integrally closed in K. The field L is a finite extension of K and B is the integral closure of A in L.

1. Show that for any $b \in B$, the minimal polynomial of b over K is in $A[x]$.
2. Prove that L is the quotient field of B. (if $l \in L$, then show that there is $c \in A$ such that $c l$ is integral over A by looking at the minimal polynomial of l over K.)
3. Suppose that L is the splitting field of a polynomial $f(x) \in A[x]$ with leading coefficient 1. Show that if \mathfrak{q} is a maximal ideal of B and $\mathfrak{p}=\mathfrak{q} \cap A$, then B / \mathfrak{q} is the splitting field of $\bar{f} \in A / \mathfrak{p}[x]$.
4. Let A be an integral domain. A is said to be integrally closed if it is integrally closed in its quotient field.
(a) Show $A=\cap_{\mathfrak{p}} A_{\mathfrak{p}}$ (as subsets of the quotient field of A) where the intersection is over all prime ideals of A, and $A_{\mathfrak{p}}=S^{-1} A, S=A \backslash \mathfrak{p}$. (Consider an element $c \in K$ and the ideal $I=\{a \in A \mid a c \in A\}$. Show that if $c \notin A$, then $I \neq A$ and is therefore contained in a maximal ideal \mathfrak{m}.)
(b) Show A is integrally closed if and only if $A_{\mathfrak{p}}$ is integrally closed for every prime ideal \mathfrak{p}.
