Algebra II, Spring 2017

Solutions to Problem Set 6

1. We need to assume that L is a Galois extension here. Let $f(x) \in K[x]$ be the minimal polynomial of b over K. Let $b=b_{1}, \ldots, b_{n}$ be the roots of $f(x)$ in L. Then since the extension is Galois and $f(x)$ is irreducible, $\operatorname{Gal}(\mathrm{L} / \mathrm{K})$ acts transitively on the roots of f, so for each i, there is an element σ of the Galois group such that $\sigma(b)=b_{i}$, so b_{i} is also integral over A. But if $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$, then for each m, $1 \leq m \leq n$,

$$
a_{n-m}=(-1)^{m} \sum_{j_{1}<\cdots<j_{m}} b_{j_{1}} \ldots b_{j_{m}}
$$

and since integrally closed elements over A form a ring, the coefficients of f should be integral over A and since A is integrally closed in K, they are in A.
2. Pick $l \in L$. We show that there is $c \in A$ such that $c l=b \in B$, so $l=\frac{b}{a}$. Let

$$
f(x)=x^{n}+\frac{a_{n-1}}{c_{n-1}} x^{n-1}+\cdots+\frac{a_{0}}{c_{0}}
$$

be the minimal polynomial of l over K. Multiplying by c^{n} where $c=c_{0} \ldots c_{n-1}$, we see that

$$
c^{n} l^{n}+a_{n-1}^{\prime} c^{n-1} l^{n-1}+\cdots+a_{1}^{\prime} c l+a_{0}^{\prime}
$$

where $a_{i}^{\prime}=c^{n-i} \frac{a_{i}}{c_{i}} \in A$ for $0 \leq i \leq n-1$. So $c l$ is a root of the polynomial

$$
x^{n}+a_{n-1}^{\prime} x^{n-1}+\cdots+a_{0}^{\prime} \in A[x] .
$$

Therefore $c l$ is integral over A so it is in B.
3. Let the roots of f be $u_{1}, \ldots u_{n} \in L$, so $f(x)=\left(x-u_{1}\right) \ldots\left(x-u_{n}\right)$. Each U_{i} is integral over A, so $u_{i} \in B$ for every i. So we have

$$
\bar{f}(x)=\left(x-\bar{u}_{1}\right) \ldots\left(x-\bar{u}_{n}\right) .
$$

where \bar{u}_{i} is the image of u_{i} in B / \mathfrak{q}. So \bar{f} splits in B / \mathfrak{q}. It remains to show the roots of \bar{f} generate B / \mathfrak{q}. Every element of B / \mathfrak{q} is of the form $\bar{b}=b+\mathfrak{q}$ for some $b \in B$. Since $b \in L$, and L is generated by the u_{i} over K, we have

$$
b=\frac{g\left(u_{1}, \ldots, u_{n}\right)}{h\left(u_{1}, \ldots, u_{n}\right)}
$$

for some $g, h \in k\left[x_{1}, \ldots, x_{n}\right]$. Multiplying by common denominators, we can assume $g, h \in A[x]$. So

$$
\bar{b}=\frac{g\left(\bar{u}_{1}, \ldots, \bar{u}_{n}\right)}{h\left(\bar{u}_{1}, \ldots, \bar{u}_{n}\right)} .
$$

4.(a) Clearly $A \subset \cap_{\mathfrak{p}} A_{\mathfrak{p}}$. Conversely, suppose an element $c=\frac{x}{y}$ of K is in $\cap_{\mathfrak{p}} A_{\mathfrak{p}}$, and let $I=\{a \in A \mid a c \in A\}$. Then if $c \notin A, 1 \notin I$, so $I \neq A$, so there is maximal ideal \mathfrak{m} of A containing I. By our assumption $c \in A_{\mathfrak{m}}$, so $c=\frac{x}{y}=\frac{a}{b}$ where $b \notin \mathfrak{m}$. But then $b c=b \frac{x}{y}=a \in A$, so by definition of $I, b \in I$. This contradicts the fact that \mathfrak{m} contains I. So c has to be in A.
(b) Let K be the quotient field of A. Then for every prime ideal \mathfrak{p} of A,

$$
A \subset A_{\mathfrak{p}} \subset K
$$

So K is the quotient field of $A_{\mathfrak{p}}$ for every \mathfrak{p}. Assume that $A_{\mathfrak{p}}$ is closed for every \mathfrak{p}, and let $c \in K$ be integral over A. The for every \mathfrak{p}, c is integral over $A_{\mathfrak{p}}$, so $s \in A_{\mathfrak{p}}$, so $c \in \cap_{\mathfrak{p}} A_{\mathfrak{p}}=A$.

Conversely, suppose that A is integrally closed, and $l \in K$ is integral over $A_{\mathfrak{p}}$. So l is the root of a polynomial

$$
f(x)=x^{n}+\frac{a_{n-1}}{b_{n-1}} x^{n-1}+\cdots+\frac{a_{0}}{b_{0}}
$$

where the b_{i} are not in \mathfrak{p}. Let $b=b_{0} \ldots b_{n-1}$. Then $b \notin \mathfrak{p}$. Multiplying the above polynomial by b^{n}, we see that $b l$ is the root of a monic polynomial in $A[x]$, so $b l \in A$, so $l=\frac{a}{b} \in A_{\mathfrak{p}}$. So $A_{\mathfrak{p}}$ is integrally closed.

