Algebra II, Spring 2017

Problem Set 7

Due: April 6 in class

1. Assume that A is a commutative ring.
(a) Generalize Question 5, from Homework 5 last semester, to show the following: If S is a multiplicative subset of A and I is an ideal of A such that $I \cap S=\emptyset$, then there is a prime ideal \mathfrak{p} containing I such that $p \cap S=\emptyset$.
(b) Conclude that $\operatorname{rad}(I)$ is the intersection of all prime ideals which contains I.
2. Show that if I is an ideal such that $\operatorname{rad}(I)$ is a maximal ideal, then I is a primary ideal. (use Question 1)
3. Give an example of an ideal I such that $\operatorname{rad}(I)$ is a prime ideal, but I is not primary.
4. Show that if A is a Noetherian ring and S is a multiplicative subset of A, then $S^{-1} A$ is Noetherian.
5. In this problem you will see an example of a polynomial $f(x) \in \mathbf{Z}[x]$ such that $f(x)$ is reducible $\bmod p$ for every prime p, but $f(x)$ is irreducible in $Q[x]$.
(a) Show that $x^{4}-10 x^{2}+1$ is irreducible in $\mathbf{Q}[x]$. (Hint: since \mathbf{Z} is integrally closed, every rational root of f has to be an integer. Show that the f has no integer roots. Then argue that there are not rational numbers a, b, c such that

$$
x^{4}-10 x^{2}+1=\left(x^{2}+a x+b\right)\left(x^{2}-a x+c\right) .
$$

(b) Show that the Galois group of $f(x)$ over $\mathbf{Q}[x]$ is $\mathbf{Z}_{2} \times \mathbf{Z}_{2}$.
(c) Show that $f(x) \bmod p$ is reducible in $\mathbf{F}_{p}[x]$ for every prime number p.

