
Algebra II, Spring 2017

Solutions to Problem Set 7

1. (a) Let M be the collection of all ideals of A containing I whose intersection with
S is empty. Then M is non-empty since I ∈M . On the other hand every increasing
chain of ideals in M has a maximal element (their union), so M has a maximal element
J be Zorn’s lemma. We claim that J is a prime ideal. If ab ∈ J and a 6∈ J and b 6∈ J ,
then the ideal J1 generated by J and x can not belong to M (by maximality of J),
so it intersects S, so there is x ∈ A and j1 ∈ J such that xa+ j1 = s1 ∈ S. Similarly,
there is y ∈ A and j2 ∈ J such that yb + j2 = s2 ∈ S. Then s1s2 ∈ S since S is
multiplicatively closed, and

s1s2 = xaj1 + ybj2 + xy(ab) + j1j2 ∈ J,

a contradiction.
(b) Clearly, rad(I) is contained in every prime ideal containing I. Conversely,

if a is contained in every prime ideal containing I, and no power of a is in I, then
S = {1, a, . . . , an, . . . } is a multiplicative subset of A, and by part (a), there is a prime
ideal p such that I ⊂ p and p ∩ S = ∅, so a 6∈ p, a contradiction.

2. Suppose m = rad(I) where m is a maximal ideal. Then by Question 1, the only
prime (and in particular maximal) ideal which contains I in m. If yn 6∈ I for every
n ≥ 1, then y 6∈ m = rad(I). Let J = I + (y). Then J is an ideal containing I and if
it is not equal to A, then it is contained in a maximal ideal n. But then n 6= m since
y ∈ n, which is not possible. So I + (y) = A, hence 1 = i + ay for some i ∈ I and
a ∈ A. Multiplying by x we get, x = ix+ axy ∈ I.

3. In class, we gave an example of a prime ideal p such that p2 is not primary. We
show rad(p2) = p. We have p2 ⊂ p, so

p ⊂ rad(p2) ⊂ rad(p) = p,

so rad(p2) = p.
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4. Every ideal in S−1A is of the form S−1I for some ideal I ⊂ A. If I is generated
by a1, . . . , am, then S−1I is generated by a1

1 , . . . ,
am
1 .

5. We first show f has no rational root. Since Z is integrally closed in Q, every rational
root of f should be an integer. But for every integer x with |x| ≥ 4, x4 − 10x2 + 1 =
x2(x2−10)+1 > x2+1 > 0, and no integer with |x| ≤ 3 is a root of f either. Suppose
now that f is a product of two irreducible factors

x4 − 10x2 + 1 = (x2 + ax+ b)(x2 + dx+ c).

Then a + d = 0, so d = −a. Also, bc = 1, bd + ca = 0, and ad + b + c = −10. So
−ab+ ca = 0, so a = 0, or c = b. And −a2 + b+ c = −10. If a = 0, then b+ c = −10
and bc = 1 which is not possible since b and c are rational. If c = b, then bc = 1,
so b = ±1. But then a2 = b + c + 10 = 12 or 8, which is not possible since we are
assuming a, b, c are rational.

(b) Let L be the splitting field of f . The roots of f are ±α and ±β for some
α, β ∈ L. Since the product of all roots of f is 1, we have (αβ)2 = 1, so αβ = ±1.
Let σ ∈ Gal(L/Q). We show if σ 6= id, then σ has order 2.

• If σ(α) = −α, then σ(β) = −β, so σ2 = id.

• If σ(α) = β, and αβ = 1, then σ(α)σ(β) = 1, so σ(β) = 1/σ(α) = 1/β = α, so
σ2 = id. Similarly, if αβ = −1, then σ(α)σ(β) = −1, so σ(β) = −1/β = α.

• If σ(α) = −β, and αβ = 1, then σ(β) = 1/(−β) = −α. Similarly, if αβ = −1,
then σ(β) = −1/(−β) = −α. So in this case, σ2 = id too.

Therefore the Galois group is isomorphic to Z2 × Z2.
(c) If p = 2, then f(x) = x4 + 1 = (x2 + 1)2 mod 2. If p = 3, then

x4 − 10x2 + 1 = (x2 + 1)2 mod 3

So assume p 6= 2, 3. Then f ′ = 4x3 − 20x = 4x(x2 − 5), so f and f ′ has no common
roots (since if α is a common root of f and f ′ mod p in the algebraic closure of Fp,
then α2 = 5, so f(α) = α2(α2 − 10) + 1 = −24 so p = 2 or p = 3.) This shows that f
has no repeated roots. Let K be the splitting field of f mod p ∈ Fp[x], and assume
f mod p is irreducible. Then [K : Fp] ≥ 4, and also since the Galois group of every
finite extension of Fp is cyclic, Gal(K/Fp) contains an n-cycle n ≥ 4. This is not
possible since Gal(L/Q) has no 4-cycle.
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