Algebra II, Spring 2017

Solutions to Problem Set 8

2. We have seen in Homework 7 that localization of Noetherian rings are Noetherian. Also Homework 6, Question 4 shows if A is integrally closed, then $A_{\mathfrak{p}}$ is integrally closed. It remains to show every non-zero prime ideal in $A_{\mathfrak{p}}$ is maximal, but this is clear since the prime ideals of $A_{\mathfrak{p}}$ are in one-to-one correspondence to prime ideals of A contained in \mathfrak{p}, so $A_{\mathfrak{p}}$ has only one non-zero prime ideal and that is $\mathfrak{p} A_{\mathfrak{p}}$.
3. Assume $t \mathfrak{m} \subset \mathfrak{m}$. Since A is Noetherian, \mathfrak{m} is finitely generated. Let $\mathfrak{m}=$ $\left(x_{1}, \ldots, x_{n}\right)$. Since $t x_{i} \in \mathfrak{m}$ by our assumption, $t x_{i}=\alpha_{i 1} x_{1}+\ldots \alpha_{i n} x_{n}$ for some $\alpha_{i j} \in A$. If M is the n by n matrix whose entries are $\alpha_{i j}$, then $M-t I_{n \times n}$ has the vector $\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]$ in its kernel, so $\operatorname{det}(M-x I)$ vanishes at t, and therefore, t is integral over A
4. If $d \equiv 3 \bmod 4$, then this is identical to the case of $\sqrt{-5}$ we did in class. So we assume $d \equiv 1 \bmod 4$, and $d=4 d^{\prime}+1$. Elements of L are of the form $\alpha=\frac{a}{b}+\frac{e}{f} \sqrt{d}$ for rational numbers $\frac{a}{b}$ and $\frac{e}{f}$. We can assume $\operatorname{gcd}(a, b)=\operatorname{gcd}(e, d)=1$. Assume α is integral over \mathbf{Z}. Let $f(x) \in \mathbf{Z}[x]$ be a polynomial with leading coefficient 1 which vanishes at α. Then $\alpha^{\prime}=\frac{a}{b}-\frac{e}{f} \sqrt{d}$ is a root of f too, so it is integral over \mathbf{Z}. Since integral elements form a ring, $\alpha+\alpha^{\prime}=\frac{2 a}{b}$ and $\alpha \alpha^{\prime}=\frac{a^{2}}{b^{2}}+\frac{e^{2} d}{f^{2}}$ are also integral over \mathbf{Z}. Since the only elements of \mathbf{Q} which are integral over \mathbf{Z} are integers, $b=1$ or 2 , and $f=1$ or 2 (since d is square-free and odd, and e and f are coprime). If $b=1$, then since $\alpha \alpha^{\prime}$ is integral, $\frac{e^{2} d}{f^{2}} \in \mathbf{Z}$, and since d is square free, $f=1$. And similarly if $f=1, b$ has to be 1 too. If $f=b=2$, then $4 \mid a^{2}+d e^{2}$, so a and e are either both even or both odd, so $a-e$ is even. Therefore α is either of the form $a+e \sqrt{d}$ or $\frac{a+e \sqrt{d}}{2}$ with $a-e$ even, hence $\alpha \in \mathbf{Z}\left[\frac{1+\sqrt{d}}{2}\right]$.

On there other hand $\alpha=\frac{1+\sqrt{d}}{2}$ is integral over Z: $\alpha^{2}-\alpha-d^{\prime}=\frac{1+d+2 \sqrt{d}-2-2 \sqrt{d}}{4}-$ $d^{\prime}=0$.
5. (a) We first show that $\mathfrak{p}_{i} \neq \mathfrak{p}_{i}^{2}$. If we localize A at \mathfrak{p}_{i}, then $A_{\mathfrak{p}_{i}}$ is a local ring which
is a Dedekind domain (by Question 2). We proved in class that its unique maximal ideal $\mathfrak{m}=\mathfrak{p}_{i} A_{\mathfrak{p}_{i}}$ is generated by one element u. If $\mathfrak{p}_{i}=\mathfrak{p}_{i}^{2}$, then $(u) \in \mathfrak{m}=\mathfrak{m}^{2}=\left(u^{2}\right)$. But then $u=x u^{2}$ for some $x \in A_{\mathfrak{p}_{i}}$, so $u(1-x u)=0$, so u is a unit, so \mathfrak{m} is not a maximal ideal, a contradiction. So pick an element $a \in \mathfrak{p}_{i}$ which is not in \mathfrak{p}_{i}^{2}. By the Chinese reminder theorem there is $x \in A$ such that $x \equiv 1 \bmod \mathfrak{p}_{j}, j \neq i$, and $x \equiv a$ $\bmod \mathfrak{p}_{i}^{2}$. (note that \mathfrak{p}_{i}^{2} and \mathfrak{p}_{j} are coprime for every $j \neq i$.) The choice of x shows that $x \notin \mathfrak{p}_{j}, j \neq i$, and $x-a \in \mathfrak{p}_{i}^{2} \subset \mathfrak{p}_{i}$, so $x \in \mathfrak{p}_{i}$, but $x \notin \mathfrak{p}_{i}^{2}$.

Now look at the primary decomposition of (x)

$$
(x)=\mathfrak{p}_{1}^{n_{1}} \ldots \mathfrak{p}_{k}^{n_{k}} .
$$

If $n_{j}>0$ for $j \neq i$, then $x \in \mathfrak{p}_{j}$, so $n_{j}=0$ for all $j \neq i$. Since $x \notin \mathfrak{p}_{i}^{2}, n_{i}=1$, so $(x)=\mathfrak{p}_{i}$.
(b) Every ideal \mathfrak{a} has a primary decomposition $\mathfrak{a}=\mathfrak{p}_{1}^{n_{1}} \ldots \mathfrak{p}_{k}^{n_{k}}$. If \mathfrak{p}_{i} is generated by x_{i}, then \mathfrak{a} is generated by $x_{1}^{n_{1}} \ldots x_{k}^{n_{k}}$.

