Algebra II, Spring 2017

Problem Set 9

Due: April 27 in class

In the following questions, **k** denotes an algebraically closed field.

- 1. (a) Show that if $f \in \mathbf{k}[x_1, \ldots, x_n]$ is an irreducible polynomial then V(f) is an irreducible algebraic subset.
- (b) Show that $f(x,y) = (x^2 1)^2 + y^2 \in \mathbf{R}[x,y]$ is irreducible, but V(f) is not irreducible.
- 2. Prove that if $I \subset \mathbf{k}[x_1, \dots, x_n]$ is an ideal, then \sqrt{I} is the intersection of all the maximal ideals containing I. (use Hilbert's Nullstellensatz.)
- 3. Let V be a closed algebraic subset of $\mathbf{A}_{\mathbf{k}}^{n}$.
 - (b) Show that every descending chain of closed subsets of V stabilizes.
 - (b) Show that every open covering of V has a finite subcover.
- 4. Write the closed algebraic set $x^2 yz = xz x = 0$ in $\mathbf{A}^3_{\mathbf{k}}$ as the union of irreducible algebraic sets.
- 5. If X_1 and X_2 are closed algebraic subsets of $\mathbf{A}^n_{\mathbf{k}}$, then show that
 - (a) $I(X_1 \cup X_2) = I(X_1) \cap I(X_2)$
 - (b) $I(X_1 \cap X_2) = \sqrt{I(X_1) + I(X_2)}$
- 6. Find the ideal of $\mathbf{k}[x,y]$ corresponding to the union of the x-axis and the point (1,1) in $\mathbf{A}_{\mathbf{k}}^2$.