Algebra II, Spring 2017

Solutions to Problem Set 9

1. (a) The polynomial ring is a UFD, so the irreducible polynomial f generates a prime ideal, and therefore $V(\{f\})$ is irreducible.
(b) $V(f)$ has two distinct points, so it is not irreducible. If

$$
f(x, y)=g(x, y) h(x, y)
$$

then for every $0 \neq a \in \mathbf{R}$,

$$
f(x, a)=g(x, a) h(x, a),
$$

and $f(x, a)$ has no roots, so $g(x, a)$ and $h(x, a)$ have not roots in \mathbf{R}. This implies that they both should be of degree 2 in $\mathbf{R}[x]$ for every non-zero a. But then $g(x, a)$ would be a polynomial of degree 2 whose coefficients are functions in a, so the discriminant would be also a function in a, and therefore it has to be either a negative constant number or positive for infinitely many a. The same is true for $h(x, q)$. This is a contradiction since $f(x, a)$ has a root only when $a=0$.
2. Let $\mathfrak{a} \subset k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal, and let \mathfrak{b} be the intersection of all the maximal ideals containing \mathfrak{a}. We want to show $\sqrt{\mathfrak{a}}=\mathfrak{b}$. Every maximal ideal is radical, so clearly $\sqrt{\mathfrak{a}} \subset \mathfrak{b}$. Conversely, let $f \in \mathfrak{b}$. By Hilbert's Nullstellensatz, we know $I(V(\mathfrak{a}))=\sqrt{\mathfrak{a}}$, so it is enough to show $f \in I(V(\mathfrak{a}))$, or equivalently, for every $p \in V(\mathfrak{a})$, $f(p)=0$. This is true because the ideal $I(\{p\})$ is a maximal ideal which contains \mathfrak{a} $(p \in V(\mathfrak{a})$, so $I(\{p\}) \supseteq I(V(\mathfrak{a})) \supseteq \mathfrak{a})$, so by our assumption $f \in I(\{p\})$, which means $f(p)=0$.
3. (a) Let $V_{1} \supseteq V_{2} \supseteq \ldots$ be a descending sequence of closed subsets of V. Then each V_{i} is an algebraic closed subset of \mathbf{A}_{k}^{n}, and

$$
I\left(V_{1}\right) \subseteq I\left(V_{2}\right) \subseteq \ldots
$$

is an ascending chain of ideals which should stabilize since the polynomial ring is Noetherian. So there is m such that

$$
I\left(V_{m}\right)=I\left(V_{m+1}\right)=\ldots,
$$

But since the V_{i} are closed algebraic subsets $V\left(I\left(V_{i}\right)\right)=V_{i}$, so by taking V, we see

$$
V_{m}=V_{m+1}=\ldots
$$

(b) Let $U_{i}, i \in I$, be an open cover of V, and assume to the contrary there is no finite subcover. Let $U_{i_{1}}$ be one of the open subsets in the cover. There should be $p_{1} \in V$ which is not in $U_{i_{1}}$. Pick $U_{i_{2}}$ which contains p_{1}. There is a point $p_{2} \in V$ which is not in $U_{i_{1}} \cap U_{i_{2}}$. Pick $U_{i_{3}}$ such that it contains p_{2}. Continuing, we get an ascending chain of open subsets

$$
U_{i_{1}} \varsubsetneqq U_{i_{1}} \cap U_{i_{2}} \varsubsetneqq \ldots
$$

The complement of this chain gives an descending chain of closed subset which does not stabilize, a contradiction.
4. If $x^{2}-y z=x z-x=0$, then $x=y=0$ or $x=z=0$ or $z=1, x^{2}=y$. Clearly $V(x, y)$ is irreducible (the ideal generated by x, y is prime.). similarly $V(x, z)$ is irreducible. Finally $V\left(z-1, x^{2}-y\right)$ is irreducible because if $I=\left(z-1, x^{2}-y\right)$, then $k[x, y, z] / I$ is isomorphic to a polynomial ring in one variable via the homomorphism

$$
\begin{gathered}
k[x, y, z] / I \rightarrow k[t] \\
x \mapsto t, y \mapsto t^{2}, z \mapsto 1, \quad \text { so } \quad f(x, y, z) \mapsto f\left(t, t^{2}, 1\right)
\end{gathered}
$$

5. (a) If $f \in I\left(X_{1} \cup X_{2}\right)$, then f vanishes on both X_{1} and X_{2}, so $f \in I\left(X_{1}\right) \cap I\left(X_{2}\right)$, and conversely, if f vanishes on both X_{1} and X_{2}, then it vanishes on their union.
(b) One direction is obvious: $X_{1} \cap X_{2} \subseteq X_{i}, i=1,2$, so $I\left(X_{i}\right) \subseteq I\left(X_{1} \cap X_{2}\right)$, so $I\left(X_{1}\right)+I\left(X_{2}\right) \subseteq I\left(X_{1} \cap X_{2}\right)$, and since X_{1}, X_{2} are closed algebraic subsets, so is $X_{1} \cap X_{2}$, hence $I\left(X_{1} \cap X_{2}\right)$ is a radical ideal. Therefore $\sqrt{I\left(X_{1}\right)+I\left(X_{2}\right)} \subseteq I\left(X_{1} \cap X_{2}\right)$.

For the other direction, we use Hilbert's Nullstellensatz. Let $J=I\left(X_{1}\right)+I\left(X_{2}\right)$. By Nullstellensatz, $I(V(J))=\sqrt{J}$. So we need to show $I\left(X_{1} \cap X_{2}\right) \subseteq I(V(J))$. To show this, it is enough to show $V(J) \subseteq X_{1} \cap X_{2}$. This is true since if $p \in V(J)$, then every polynomial in $I\left(X_{1}\right)+I\left(X_{2}\right)$ vanishes at p, in particular every polynomial in $I\left(X_{1}\right)$ and every polynomial in $I\left(X_{2}\right)$ vanishes at p, so $p \in V\left(I\left(X_{1}\right)\right) \cap V\left(I\left(X_{2}\right)\right)$. We know $V\left(I\left(X_{i}\right)\right)=X_{i}$, so $p \in X_{1} \cap X_{2}$.
6. By Question 5 (a), the ideal is $I=(y) \cap(x-1, y-1)$. We show $I=(y(x-1), y(y-1))$ The reason is that if $f(x, y) \in I$, then $f(x, y)=y g(x, y)$ for some g, and $y g(x, y) \in$ $\mathfrak{m}=(x-1, y-1)$. But \mathfrak{m} is a maximal ideal and $y \notin \mathfrak{m}$ (the function y does not vanish on $(1,1))$, so $g(x, y) \in \mathfrak{m}$, so $f \in(y(x-1), y(y-1))$.

