
Algebra II, Spring 2017

Solutions to Problem Set 9

1. (a) The polynomial ring is a UFD, so the irreducible polynomial f generates a
prime ideal, and therefore V ({f}) is irreducible.

(b) V (f) has two distinct points, so it is not irreducible. If

f(x, y) = g(x, y)h(x, y),

then for every 0 6= a ∈ R,
f(x, a) = g(x, a)h(x, a),

and f(x, a) has no roots, so g(x, a) and h(x, a) have not roots in R. This implies that
they both should be of degree 2 in R[x] for every non-zero a. But then g(x, a) would
be a polynomial of degree 2 whose coefficients are functions in a, so the discriminant
would be also a function in a, and therefore it has to be either a negative constant
number or positive for infinitely many a. The same is true for h(x, q). This is a
contradiction since f(x, a) has a root only when a = 0.

2. Let a ⊂ k[x1, . . . , xn] be an ideal, and let b be the intersection of all the maximal
ideals containing a. We want to show

√
a = b. Every maximal ideal is radical,

so clearly
√
a ⊂ b. Conversely, let f ∈ b. By Hilbert’s Nullstellensatz, we know

I(V (a)) =
√
a, so it is enough to show f ∈ I(V (a)), or equivalently, for every p ∈ V (a),

f(p) = 0. This is true because the ideal I({p}) is a maximal ideal which contains a
(p ∈ V (a), so I({p}) ⊇ I(V (a)) ⊇ a), so by our assumption f ∈ I({p}), which means
f(p) = 0.

3. (a) Let V1 ⊇ V2 ⊇ . . . be a descending sequence of closed subsets of V . Then each
Vi is an algebraic closed subset of An

k , and

I(V1) ⊆ I(V2) ⊆ . . .

is an ascending chain of ideals which should stabilize since the polynomial ring is
Noetherian. So there is m such that

I(Vm) = I(Vm+1) = . . . ,
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But since the Vi are closed algebraic subsets V (I(Vi)) = Vi, so by taking V , we see

Vm = Vm+1 = . . . .

(b) Let Ui, i ∈ I, be an open cover of V , and assume to the contrary there is no
finite subcover. Let Ui1 be one of the open subsets in the cover. There should be
p1 ∈ V which is not in Ui1 . Pick Ui2 which contains p1. There is a point p2 ∈ V
which is not in Ui1 ∩ Ui2 . Pick Ui3 such that it contains p2. Continuing, we get an
ascending chain of open subsets

Ui1 $ Ui1 ∩ Ui2 $ . . .

The complement of this chain gives an descending chain of closed subset which does
not stabilize, a contradiction.

4. If x2 − yz = xz − x = 0, then x = y = 0 or x = z = 0 or z = 1, x2 = y.
Clearly V (x, y) is irreducible (the ideal generated by x, y is prime.). similarly V (x, z)
is irreducible. Finally V (z−1, x2−y) is irreducible because if I = (z−1, x2−y), then
k[x, y, z]/I is isomorphic to a polynomial ring in one variable via the homomorphism

k[x, y, z]/I → k[t]

x 7→ t, y 7→ t2, z 7→ 1, so f(x, y, z) 7→ f(t, t2, 1)

5. (a) If f ∈ I(X1 ∪X2), then f vanishes on both X1 and X2, so f ∈ I(X1) ∩ I(X2),
and conversely, if f vanishes on both X1 and X2, then it vanishes on their union.

(b) One direction is obvious: X1 ∩ X2 ⊆ Xi, i = 1, 2, so I(Xi) ⊆ I(X1 ∩ X2),
so I(X1) + I(X2) ⊆ I(X1 ∩X2), and since X1, X2 are closed algebraic subsets, so is
X1∩X2, hence I(X1∩X2) is a radical ideal. Therefore

√
I(X1) + I(X2) ⊆ I(X1∩X2).

For the other direction, we use Hilbert’s Nullstellensatz. Let J = I(X1) + I(X2).
By Nullstellensatz, I(V (J)) =

√
J . So we need to show I(X1 ∩X2) ⊆ I(V (J)). To

show this, it is enough to show V (J) ⊆ X1 ∩X2. This is true since if p ∈ V (J), then
every polynomial in I(X1) + I(X2) vanishes at p, in particular every polynomial in
I(X1) and every polynomial in I(X2) vanishes at p, so p ∈ V (I(X1))∩V (I(X2)). We
know V (I(Xi)) = Xi, so p ∈ X1 ∩X2.

6. By Question 5 (a), the ideal is I = (y)∩(x−1, y−1). We show I = (y(x−1), y(y−1))
The reason is that if f(x, y) ∈ I, then f(x, y) = yg(x, y) for some g, and yg(x, y) ∈
m = (x − 1, y − 1). But m is a maximal ideal and y 6∈ m (the function y does not
vanish on (1, 1)), so g(x, y) ∈ m, so f ∈ (y(x− 1), y(y − 1)).
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