
Solutions to the selected problems (Homework 5–7)

Linear Algebra

Fall 2010

Page 86, 3) Let T be the given function, so T (x, y, z, t) =
(
t+ x y + iz
y − iz t− x

)
.

Then

T (c(x, y, z, w) + (x′, y′, z′, w′)) = T (cx+ x′, cy + y′, cz + z′, cw + w′)

=
(

ct+ t′ + cx+ x′ cy + y′ + i(cz + z′)
cy + y′ − i(cz + z′) ct+ t′ − (cx+ x′)

)
= c

(
t+ x y + iz
y − iz t− x

)
+
(
t′ + x′ y′ + iz′

y′ − iz′ t′ − x′
)

= cT (x, y, z, w) + T (x′, y′, z′, w′),

for any c ∈ R, so T is linear. To show that T is an isomorphism, it is enough
to show that T is one-one and onto.

If T (x, y, z, w) = 0, then t + x = y + iz = y − iz = t − x = 0, so
t = x = z = w = 0, so T is one-one. If A is a Hermitian matrix, then

A =
(

a b+ ic
b− ic d

)
where a, b, c, d ∈ R. If we let t = a+d

2 , x = a−d
2 , y =

b, z = c, then T (x, y, z, w) = A, so T is onto.

Page 96, 12. (b) We have

Tm(αj) =

{
αj+m if j ≤ n−m
0 if j > n−m

So Tn(αi) = 0 for every 1 ≤ i ≤ n, and since every vector can be written as
a linear combination of the αi, Tn(α) = 0 for every vector α ∈ V . We have
Tn−1(α1) = αn 6= 0, so Tn−1 6= 0.
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(c) since Sn−1 6= 0, we can choose a vector α such that Sn−1(α) 6= 0.
Let α1 = α, α2 = S(α), . . . , αi = Si−1(α), . . . , αn = Sn−1(α). Clearly
S(αj) = αj+1 if j < n, and S(αn) = 0 since Sn = 0. We claim the αj are
linearly independent. Note that αn = Sn−1(α) 6= 0. Assume on the contrary
that there is a non-trivial linear relation

c1α1 + . . . cnαn = 0

(so there is at least one ci which is not equal to zero). Assume that t is the
smallest integer such that ct 6= 0. So we have

ctαt + · · ·+ cnαn = 0, ct 6= 0.

Then
Sn−t(ctαt + . . . cnαn) = 0.

So
ctS

n−t(αt) + · · ·+ cnS
n−t(αn) = 0,

but Sn−t(αt+1) = · · · = Sn−t(αn) = 0 and Sn−t(αt) = αn by definition, so

ctαn = 0.

But αn is non-zero by our assumption, so ct = 0, a contradiciton. Therefore,
there is no non-trivial linear relation between the αi. Thus they are linearly
independent and hence form a basis.

(d) Assume that Mn−1 6= 0 and Mn = 0. Define a linear transformation

S : Fn×1 → Fn×1

such that S(X) = MX. Then Sn(X) = MnX = 0, so Sn = 0, and Sn−1 6=
0. so by part (b) there is a basis B = {α1, . . . , αn} for Fn×1 such that
S(αi) = αi+1 for 1 ≤ i ≤ n−1 and S(αn) = 0. The matrix of S in this basis
is

[S]B =


0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
...

...
. . .

...
0 0 0 · · · 0


Sicne M is the matrix of S with respect to the standard basis, M is similar
to the above matrix. The same argument shows that N is similar to the
above matrix. Since being similar is an equivalent relations, M and N are
similar.
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Page 106, 11) If W1 and W2 are two subspaces of a vector space V , then
clearly

W1 ⊂W2 implies (W2)0 ⊂ (W1)0.

(a) Since W1,W2 ⊂W1 +W2, (W1 +W2)0 ⊂W 0
1 and (W1 +W2)0 ⊂W 0

2 ,
so (W1 + W2)0 ⊂ W 0

1 ∩ W 0
2 . Conversely, assume f ∈ W 0

1 ∩ W 0
2 , and let

α ∈ W1 + W2, then α = α1 + α2 for some α1 ∈ W1 and α2 ∈ W2. So
f(α) = f(α1 + α2) = f(α1) + f(α2) = 0. Therefore, f ∈ (W1 +W2)0.

(b) Since W1 ∩W2 ⊂W1,W2, we have

W 0
1 ,W

0
2 ⊂ (W1 ∩W2)0.

Since by definition, W 0
1 + W 0

2 is the intersection of all subspaces which
contain both W 0

1 and W 0
2 , the above inclusion implies that W 0

1 + W 0
2 ⊂

(W1 ∩W2)0. To show that

(W1 ∩W2)0 = W 0
1 +W 0

2 ,

it is enough to show that dim(W1∩W2)0 = dim(W 0
1 +W 0

2 ) (because a proper
subspace of a vector space has dimension smaller than the dimension of the
vector space). We have

dim(W 0
1 +W 0

2 ) = dimW 0
1 + dimW 0

2 − dim(W 0
1 ∩W 0

2 ) (by Thm. 6, page 46)

= dimW 0
1 + dimW 0

2 − dim(W1 +W2)0 (by part (a))
= (dimV − dimW1) + (dimV − dimW2) (by Thm. 16, page 101)
− (dimV − dim(W1 +W2))

= dimV − (dimW1 + dimW2 − dim(W1 +W2))
= dimV − dim(W1 ∩W2)

= dim(W1 ∩W2)0

Page 106, 12) Assume dimW = r and dimV = n. Pick a basis α1, . . . , αr

for W , and extend it to a basis: α1, . . . , αn for V . We know that a linear
functional g : V → F is uniquely determined by its values at the αi. And
we also know that for any choice of scalars a1, . . . , an ∈ F , there is a linear
functional V → F which sends αi to ai (such a linear functional is given by
g(c1α1 + · · ·+ cnαn) = c1a1 + . . . cnan).

Now given f : W → F , define g as follows: g(α1) = f(α1), . . . , g(αr) =
f(αr), g(αr + 1) = 0, . . . , g(αn) = 0. Then we can extend g to the whole V .
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Any vector α ∈ V can be written uniquely as

α = c1α1 + . . . cnαn,

and g(α) = c1f(α1) + · · ·+ crf(αr). Then g is of course a linear functional.
And if α is already in W , then when we write α as above, we have

α = c1α1 + . . . crαr,

so

g(α) = c1f(α1) + · · ·+ crf(αr) = f(c1α1 + · · ·+ crαr) = f(α).

So on W , f = g.

Page 106 13) We have h(α) = f(α)g(α), so for every c ∈ F ,

c h(α) = cf(α)g(α).

On the other hand,

c h(α) = h(cα) = f(cα)g(cα) = cf(α)cg(α) = c2f(α)g(α).

Comparing the above two equalities, we see for every c ∈ F , and α ∈ V :

cf(α)g(α) = c2f(α)g(α).

Pick an arbitrary c 6= 0, 1. For every α ∈ V , we have

f(α)g(α) = cf(α)g(α),

so (c − 1)f(α)g(α) = 0, so f(α) = 0, or g(α) = 0. Therefore, if we let W1

be the null-space of f :

W1 = {α ∈ V : f(α) = 0},

and W2 be the nullspace of g, then V = W1 ∪W2. But we know from a
previous homework that the union of two subspaces is a subspace exactly
when one is contained in the other one. Thus either W1 ⊂W2 or W2 ⊂W1.
In the former case V = W1 ∪ W2 = W2 so g = 0, and in the later case,
V = W1 ∪W2 = W1, so f = 0.
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Page 107, 17) We know that

trace(A+ cB) = trace(A) + c trace(B),

so the set of trace zero matrices is a subspace of W , which we denote by
W1. Let Ei,j be a matrix whose entries are all zero except the (i, j)-th entry
which is equal to 1. Let M i, 1 ≤ i ≤ n− 1 be the matrix whose entries are
all zero, except the (i, i)-th entry which is 1 and the (n, n)-th entry which
is -1. Then Ei,j , 1 ≤ i, j ≤ n, i 6= j, and M i, 1 ≤ i ≤ n − 1 are all in W1.
These (nn − n) + (n− 1) = n2 − n matrices span W1: If A ∈W1, A has the
form 

a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...
an,1 an,2 · · · −(a1,1 + · · ·+ an−1,n−1)


So

A =
∑

1≤i 6=j≤n

ai,jE
i,j +

n−1∑
i=1

ai,iM
i.

(It is easy to show that these n2 − 1 matrices are linearly independent too,
so dimW1 = n2 − 1, but it is not needed here).

Note that if a matrix P can be written as AB − BA, then the same is
true for every scalar multiple of P :

cP = cAB − cBA = (cA)B −B(cA) = A′B −BA′

where A′ = cA.
Now we show that each matrix Ei,j can be written as AB −BA for two

matrices A and B and the same is true for every matrix M i. Since every
matrix of trace zero can be written as a linear combination of the Ei,j and
M i, this shows that every matrix of trace zero can be written as a finite sum

(A1B1 −B1A1) + · · ·+ (AkBk −BkAk)

for some matrices Ai and Bi. Which is exactly what the question is asking
(well this is one direction, the other direction is trivial: every matrix of the
form AB−BA has trace zero by a previous homework, and the same is true
for a sum of the matrices of the form AB −BA.)

Note that for any i, j, k, l, we have

Ei,kEl,j =

{
0 if k 6= l

Ei,l if k = l
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So if i 6= j,
Ei,j = Ei,iEi,j − Ei,jEi,i.

And if 1 ≤ i ≤ n− 1,

M i = Ei,nEn,i − En,iEi,n.

Page 115, 1) (a) g(x1, x2) = ax1, (b) g(x1, x2) = bx1 − ax2, (c) g(x1, x2) =
(a+ b)x1 + (b− a)x2.

Page 149, 6) If j1, . . . , jn are distinct, then it is easy to show that D is n-
linear (I think we proved this in class). Conversely, we assume that j1, . . . , jn
are not distinct and we show that D is not linear. Assume that jr = js,
r 6= s. Let j := jr = js. Assume that m of the numbers j1, . . . , jn are equal
to j. Then m ≥ 2, and if If we denote the rows of A, by ρ1, . . . , ρn, then

D(ρ1, . . . , , cρj , . . . , ρn) = cmAj1,k1Aj2,k2 · · ·Ajn,kn .

But
cD(ρ1, . . . , ρj , . . . , ρn) = cAj1,k1Aj2,k2 · · ·Ajn,kn .

If we take A to be the matrix whose entries are all 1, and if we let c be a
scalar, then the two right hand sides of the above equations are cm and c.
Since m ≥ 2, we can choose a scalar c such that cm 6= c, so D cannot be
linear with respect to the j-th row.

Page 163, 7) This can be proved using induction. For k = 2, this is just the
special case of equation (5-19) of the book. If we know the equality holds for
k−1, and A is the given matrix, then we can divide the matrix into 4 blocks:

A1,
(
0 · · · 0

)
,

0
...
0


A2 · · · 0

...
...

0 · · · Ak

. By equation (5-19) determinant of

A is equal to (detA1) times the determinant of the last block. By induction,
the last block has determinant equal to (detA2) . . . (detAk), so

detA = (detA1) · · · (detAk).
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Page 163, 9) Assume A is n × n. If the determinant rank of A is r. Then
there is a submatrix B of A consisting of say columns j1, . . . , jr and rows
i1, . . . ir of A such that det(B) 6= 0. This implies that the columns of B
are linearly independent, in particular, columns j1, . . . , jr of A are linearly
independent, so the rank of A is at least r. so

rank (A) ≥ determinant rank (A).

On the other hand if rank(A)= s, then there are s linearly independent
rows of A: call them i1, . . . , is. Let M be the s× n matrix which is formed
by rows i1, . . . , is of A. Then since M has linearly independent rows, the
rank of M (which is defined to be the row rank of M and is equal to the
column rank of M) is s, so there are s columns j1, . . . , js of M which are
linearly independent. The matrix which is obtained from rows j1, . . . , js of
M is a submatrix of A with rank s, so it is invertible, and its determinant
is not equal to zero. So

determinant rank(A) ≥ rank(A),

and the result follows.
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