Solutions to the selected problems (Homework 5-7)

Linear Algebra

Fall 2010

Page 86, 3) Let T be the given function, so $T(x, y, z, t)=\left(\begin{array}{cc}t+x & y+i z \\ y-i z & t-x\end{array}\right)$. Then

$$
\begin{aligned}
T\left(c(x, y, z, w)+\left(x^{\prime}, y^{\prime}, z^{\prime}, w^{\prime}\right)\right) & =T\left(c x+x^{\prime}, c y+y^{\prime}, c z+z^{\prime}, c w+w^{\prime}\right) \\
& =\left(\begin{array}{cc}
c t+t^{\prime}+c x+x^{\prime} & c y+y^{\prime}+i\left(c z+z^{\prime}\right) \\
c y+y^{\prime}-i\left(c z+z^{\prime}\right) & c t+t^{\prime}-\left(c x+x^{\prime}\right)
\end{array}\right) \\
& =c\left(\begin{array}{cc}
t+x & y+i z \\
y-i z & t-x
\end{array}\right)+\left(\begin{array}{cc}
t^{\prime}+x^{\prime} & y^{\prime}+i z^{\prime} \\
y^{\prime}-i z^{\prime} & t^{\prime}-x^{\prime}
\end{array}\right) \\
& =c T(x, y, z, w)+T\left(x^{\prime}, y^{\prime}, z^{\prime}, w^{\prime}\right),
\end{aligned}
$$

for any $c \in \mathbf{R}$, so T is linear. To show that T is an isomorphism, it is enough to show that T is one-one and onto.

If $T(x, y, z, w)=0$, then $t+x=y+i z=y-i z=t-x=0$, so $t=x=z=w=0$, so T is one-one. If A is a Hermitian matrix, then $A=\left(\begin{array}{cc}a & b+i c \\ b-i c & d\end{array}\right)$ where $a, b, c, d \in \mathbf{R}$. If we let $t=\frac{a+d}{2}, x=\frac{a-d}{2}, y=$ $b, z=c$, then $T(x, y, z, w)=A$, so T is onto.

Page 96, 12. (b) We have

$$
T^{m}\left(\alpha_{j}\right)=\left\{\begin{array}{lll}
\alpha_{j+m} & \text { if } j \leq n-m \\
0 & \text { if } j>n-m
\end{array}\right.
$$

So $T^{n}\left(\alpha_{i}\right)=0$ for every $1 \leq i \leq n$, and since every vector can be written as a linear combination of the $\alpha_{i}, T^{n}(\alpha)=0$ for every vector $\alpha \in V$. We have $T^{n-1}\left(\alpha_{1}\right)=\alpha_{n} \neq 0$, so $T^{n-1} \neq 0$.
(c) since $S^{n-1} \neq 0$, we can choose a vector α such that $S^{n-1}(\alpha) \neq 0$. Let $\alpha_{1}=\alpha, \alpha_{2}=S(\alpha), \ldots, \alpha_{i}=S^{i-1}(\alpha), \ldots, \alpha_{n}=S^{n-1}(\alpha)$. Clearly $S\left(\alpha_{j}\right)=\alpha_{j+1}$ if $j<n$, and $S\left(\alpha_{n}\right)=0$ since $S^{n}=0$. We claim the α_{j} are linearly independent. Note that $\alpha_{n}=S^{n-1}(\alpha) \neq 0$. Assume on the contrary that there is a non-trivial linear relation

$$
c_{1} \alpha_{1}+\ldots c_{n} \alpha_{n}=0
$$

(so there is at least one c_{i} which is not equal to zero). Assume that t is the smallest integer such that $c_{t} \neq 0$. So we have

$$
c_{t} \alpha_{t}+\cdots+c_{n} \alpha_{n}=0, \quad c_{t} \neq 0 .
$$

Then

$$
S^{n-t}\left(c_{t} \alpha_{t}+\ldots c_{n} \alpha_{n}\right)=0
$$

So

$$
c_{t} S^{n-t}\left(\alpha_{t}\right)+\cdots+c_{n} S^{n-t}\left(\alpha_{n}\right)=0
$$

but $S^{n-t}\left(\alpha_{t+1}\right)=\cdots=S^{n-t}\left(\alpha_{n}\right)=0$ and $S^{n-t}\left(\alpha_{t}\right)=\alpha_{n}$ by definition, so

$$
c_{t} \alpha_{n}=0 .
$$

But α_{n} is non-zero by our assumption, so $c_{t}=0$, a contradiciton. Therefore, there is no non-trivial linear relation between the α_{i}. Thus they are linearly independent and hence form a basis.
(d) Assume that $M^{n-1} \neq 0$ and $M^{n}=0$. Define a linear transformation

$$
S: F^{n \times 1} \rightarrow F^{n \times 1}
$$

such that $S(X)=M X$. Then $S^{n}(X)=M^{n} X=0$, so $S^{n}=0$, and $S^{n-1} \neq$ 0 . so by part (b) there is a basis $\mathcal{B}=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ for $F^{n \times 1}$ such that $S\left(\alpha_{i}\right)=\alpha_{i+1}$ for $1 \leq i \leq n-1$ and $S\left(\alpha_{n}\right)=0$. The matrix of S in this basis is

$$
[S]_{\mathcal{B}}=\left(\begin{array}{cccc}
0 & 0 & 0 & \cdots \\
1 & 0 & 0 & \cdots \\
0 & 1 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots
\end{array}\right)
$$

Sicne M is the matrix of S with respect to the standard basis, M is similar to the above matrix. The same argument shows that N is similar to the above matrix. Since being similar is an equivalent relations, M and N are similar.

Page 106, 11) If W_{1} and W_{2} are two subspaces of a vector space V, then clearly

$$
W_{1} \subset W_{2} \text { implies }\left(W_{2}\right)^{0} \subset\left(W_{1}\right)^{0} .
$$

(a) Since $W_{1}, W_{2} \subset W_{1}+W_{2},\left(W_{1}+W_{2}\right)^{0} \subset W_{1}^{0}$ and $\left(W_{1}+W_{2}\right)^{0} \subset W_{2}^{0}$, so ($\left.W_{1}+W_{2}\right)^{0} \subset W_{1}^{0} \cap W_{2}^{0}$. Conversely, assume $f \in W_{1}^{0} \cap W_{2}^{0}$, and let $\alpha \in W_{1}+W_{2}$, then $\alpha=\alpha_{1}+\alpha_{2}$ for some $\alpha_{1} \in W_{1}$ and $\alpha_{2} \in W_{2}$. So $f(\alpha)=f\left(\alpha_{1}+\alpha_{2}\right)=f\left(\alpha_{1}\right)+f\left(\alpha_{2}\right)=0$. Therefore, $f \in\left(W_{1}+W_{2}\right)^{0}$.
(b) Since $W_{1} \cap W_{2} \subset W_{1}, W_{2}$, we have

$$
W_{1}^{0}, W_{2}^{0} \subset\left(W_{1} \cap W_{2}\right)^{0} .
$$

Since by definition, $W_{1}^{0}+W_{2}^{0}$ is the intersection of all subspaces which contain both W_{1}^{0} and W_{2}^{0}, the above inclusion implies that $W_{1}^{0}+W_{2}^{0} \subset$ $\left(W_{1} \cap W_{2}\right)^{0}$. To show that

$$
\left(W_{1} \cap W_{2}\right)^{0}=W_{1}^{0}+W_{2}^{0},
$$

it is enough to show that $\operatorname{dim}\left(W_{1} \cap W_{2}\right)^{0}=\operatorname{dim}\left(W_{1}^{0}+W_{2}^{0}\right)$ (because a proper subspace of a vector space has dimension smaller than the dimension of the vector space). We have

$$
\begin{aligned}
\operatorname{dim}\left(W_{1}^{0}+W_{2}^{0}\right)= & \operatorname{dim} W_{1}^{0}+\operatorname{dim} W_{2}^{0}-\operatorname{dim}\left(W_{1}^{0} \cap W_{2}^{0}\right) \quad \text { (by Thm. 6, page 46) } \\
= & \operatorname{dim} W_{1}^{0}+\operatorname{dim} W_{2}^{0}-\operatorname{dim}\left(W_{1}+W_{2}\right)^{0} \quad \text { (by part (a)) } \\
= & \left(\operatorname{dim} V-\operatorname{dim} W_{1}\right)+\left(\operatorname{dim} V-\operatorname{dim} W_{2}\right) \quad \text { (by Thm. 16, page 101) } \\
& -\left(\operatorname{dim} V-\operatorname{dim}\left(W_{1}+W_{2}\right)\right) \\
= & \operatorname{dim} V-\left(\operatorname{dim} W_{1}+\operatorname{dim} W_{2}-\operatorname{dim}\left(W_{1}+W_{2}\right)\right) \\
= & \operatorname{dim} V-\operatorname{dim}\left(W_{1} \cap W_{2}\right) \\
= & \operatorname{dim}\left(W_{1} \cap W_{2}\right)^{0}
\end{aligned}
$$

Page 106, 12) Assume $\operatorname{dim} W=r$ and $\operatorname{dim} V=n$. Pick a basis $\alpha_{1}, \ldots, \alpha_{r}$ for W, and extend it to a basis: $\alpha_{1}, \ldots, \alpha_{n}$ for V. We know that a linear functional $g: V \rightarrow F$ is uniquely determined by its values at the α_{i}. And we also know that for any choice of scalars $a_{1}, \ldots, a_{n} \in F$, there is a linear functional $V \rightarrow F$ which sends α_{i} to a_{i} (such a linear functional is given by $\left.g\left(c_{1} \alpha_{1}+\cdots+c_{n} \alpha_{n}\right)=c_{1} a_{1}+\ldots c_{n} a_{n}\right)$.

Now given $f: W \rightarrow F$, define g as follows: $g\left(\alpha_{1}\right)=f\left(\alpha_{1}\right), \ldots, g\left(\alpha_{r}\right)=$ $f\left(\alpha_{r}\right), g\left(\alpha_{r}+1\right)=0, \ldots, g\left(\alpha_{n}\right)=0$. Then we can extend g to the whole V.

Any vector $\alpha \in V$ can be written uniquely as

$$
\alpha=c_{1} \alpha_{1}+\ldots c_{n} \alpha_{n}
$$

and $g(\alpha)=c_{1} f\left(\alpha_{1}\right)+\cdots+c_{r} f\left(\alpha_{r}\right)$. Then g is of course a linear functional. And if α is already in W, then when we write α as above, we have

$$
\alpha=c_{1} \alpha_{1}+\ldots c_{r} \alpha_{r}
$$

so

$$
g(\alpha)=c_{1} f\left(\alpha_{1}\right)+\cdots+c_{r} f\left(\alpha_{r}\right)=f\left(c_{1} \alpha_{1}+\cdots+c_{r} \alpha_{r}\right)=f(\alpha)
$$

So on $W, f=g$.

Page 106 13) We have $h(\alpha)=f(\alpha) g(\alpha)$, so for every $c \in F$,

$$
c h(\alpha)=c f(\alpha) g(\alpha)
$$

On the other hand,

$$
c h(\alpha)=h(c \alpha)=f(c \alpha) g(c \alpha)=c f(\alpha) c g(\alpha)=c^{2} f(\alpha) g(\alpha) .
$$

Comparing the above two equalities, we see for every $c \in F$, and $\alpha \in V$:

$$
c f(\alpha) g(\alpha)=c^{2} f(\alpha) g(\alpha) .
$$

Pick an arbitrary $c \neq 0,1$. For every $\alpha \in V$, we have

$$
f(\alpha) g(\alpha)=c f(\alpha) g(\alpha)
$$

so $(c-1) f(\alpha) g(\alpha)=0$, so $f(\alpha)=0$, or $g(\alpha)=0$. Therefore, if we let W_{1} be the null-space of f :

$$
W_{1}=\{\alpha \in V: f(\alpha)=0\},
$$

and W_{2} be the nullspace of g, then $V=W_{1} \cup W_{2}$. But we know from a previous homework that the union of two subspaces is a subspace exactly when one is contained in the other one. Thus either $W_{1} \subset W_{2}$ or $W_{2} \subset W_{1}$. In the former case $V=W_{1} \cup W_{2}=W_{2}$ so $g=0$, and in the later case, $V=W_{1} \cup W_{2}=W_{1}$, so $f=0$.

Page 107, 17) We know that

$$
\operatorname{trace}(A+c B)=\operatorname{trace}(A)+c \operatorname{trace}(B)
$$

so the set of trace zero matrices is a subspace of W, which we denote by W_{1}. Let $E^{i, j}$ be a matrix whose entries are all zero except the (i, j)-th entry which is equal to 1 . Let $M^{i}, 1 \leq i \leq n-1$ be the matrix whose entries are all zero, except the (i, i)-th entry which is 1 and the (n, n)-th entry which is -1 . Then $E^{i, j}, 1 \leq i, j \leq n, i \neq j$, and $M^{i}, 1 \leq i \leq n-1$ are all in W_{1}. These $\left(n^{n}-n\right)+(n-1)=n^{2}-n$ matrices span W_{1} : If $A \in W_{1}, A$ has the form

$$
\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n, 1} & a_{n, 2} & \cdots & -\left(a_{1,1}+\cdots+a_{n-1, n-1}\right)
\end{array}\right)
$$

So

$$
A=\sum_{1 \leq i \neq j \leq n} a_{i, j} E^{i, j}+\sum_{i=1}^{n-1} a_{i, i} M^{i}
$$

(It is easy to show that these $n^{2}-1$ matrices are linearly independent too, so $\operatorname{dim} W_{1}=n^{2}-1$, but it is not needed here).

Note that if a matrix P can be written as $A B-B A$, then the same is true for every scalar multiple of P :

$$
c P=c A B-c B A=(c A) B-B(c A)=A^{\prime} B-B A^{\prime}
$$

where $A^{\prime}=c A$.
Now we show that each matrix $E^{i, j}$ can be written as $A B-B A$ for two matrices A and B and the same is true for every matrix M^{i}. Since every matrix of trace zero can be written as a linear combination of the $E^{i, j}$ and M^{i}, this shows that every matrix of trace zero can be written as a finite sum

$$
\left(A_{1} B_{1}-B_{1} A_{1}\right)+\cdots+\left(A_{k} B_{k}-B_{k} A_{k}\right)
$$

for some matrices A_{i} and B_{i}. Which is exactly what the question is asking (well this is one direction, the other direction is trivial: every matrix of the form $A B-B A$ has trace zero by a previous homework, and the same is true for a sum of the matrices of the form $A B-B A$.)

Note that for any i, j, k, l, we have

$$
E^{i, k} E^{l, j}= \begin{cases}0 & \text { if } k \neq l \\ E^{i, l} & \text { if } k=l\end{cases}
$$

So if $i \neq j$,

$$
E^{i, j}=E^{i, i} E^{i, j}-E^{i, j} E^{i, i} .
$$

And if $1 \leq i \leq n-1$,

$$
M^{i}=E^{i, n} E^{n, i}-E^{n, i} E^{i, n} .
$$

Page 115, 1) (a) $g\left(x_{1}, x_{2}\right)=a x_{1}$, (b) $g\left(x_{1}, x_{2}\right)=b x_{1}-a x_{2}$, (c) $g\left(x_{1}, x_{2}\right)=$ $(a+b) x_{1}+(b-a) x_{2}$.

Page 149,6) If j_{1}, \ldots, j_{n} are distinct, then it is easy to show that D is n linear (I think we proved this in class). Conversely, we assume that j_{1}, \ldots, j_{n} are not distinct and we show that D is not linear. Assume that $j_{r}=j_{s}$, $r \neq s$. Let $j:=j_{r}=j_{s}$. Assume that m of the numbers j_{1}, \ldots, j_{n} are equal to j. Then $m \geq 2$, and if If we denote the rows of A, by $\rho_{1}, \ldots, \rho_{n}$, then

$$
D\left(\rho_{1}, \ldots,, c \rho_{j}, \ldots, \rho_{n}\right)=c^{m} A_{j_{1}, k_{1}} A_{j_{2}, k_{2}} \cdots A_{j_{n}, k_{n}} .
$$

But

$$
c D\left(\rho_{1}, \ldots, \rho_{j}, \ldots, \rho_{n}\right)=c A_{j_{1}, k_{1}} A_{j_{2}, k_{2}} \cdots A_{j_{n}, k_{n}} .
$$

If we take A to be the matrix whose entries are all 1 , and if we let c be a scalar, then the two right hand sides of the above equations are c^{m} and c. Since $m \geq 2$, we can choose a scalar c such that $c^{m} \neq c$, so D cannot be linear with respect to the j-th row.

Page 163, 7) This can be proved using induction. For $k=2$, this is just the special case of equation (5-19) of the book. If we know the equality holds for $k-1$, and A is the given matrix, then we can divide the matrix into 4 blocks: $A_{1},\left(\begin{array}{lll}0 & \cdots & 0\end{array}\right),\left(\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right)\left(\begin{array}{ccc}A_{2} & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & A_{k}\end{array}\right)$. By equation (5-19) determinant of A is equal to ($\operatorname{det} A_{1}$) times the determinant of the last block. By induction, the last block has determinant equal to $\left(\operatorname{det} A_{2}\right) \ldots\left(\operatorname{det} A_{k}\right)$, so

$$
\operatorname{det} A=\left(\operatorname{det} A_{1}\right) \cdots\left(\operatorname{det} A_{k}\right) .
$$

Page 163, 9) Assume A is $n \times n$. If the determinant rank of A is r. Then there is a submatrix B of A consisting of say columns j_{1}, \ldots, j_{r} and rows $i_{1}, \ldots i_{r}$ of A such that $\operatorname{det}(B) \neq 0$. This implies that the columns of B are linearly independent, in particular, columns j_{1}, \ldots, j_{r} of A are linearly independent, so the rank of A is at least r. so

$$
\operatorname{rank}(A) \geq \text { determinant } \operatorname{rank}(A)
$$

On the other hand if $\operatorname{rank}(A)=s$, then there are s linearly independent rows of A : call them i_{1}, \ldots, i_{s}. Let M be the $s \times n$ matrix which is formed by rows i_{1}, \ldots, i_{s} of A. Then since M has linearly independent rows, the rank of M (which is defined to be the row rank of M and is equal to the column rank of M) is s, so there are s columns j_{1}, \ldots, j_{s} of M which are linearly independent. The matrix which is obtained from rows j_{1}, \ldots, j_{s} of M is a submatrix of A with rank s, so it is invertible, and its determinant is not equal to zero. So

$$
\text { determinant } \operatorname{rank}(A) \geq \operatorname{rank}(A)
$$

and the result follows.

