MATH 429, LINEAR ALGEBRA

FALL 2010

1. If A is an n by m matrix, such that $n<m$, show that $A X=0$ has a non-trivial solution.
2. Prove that an n by n matrix with a left inverse is invertible.
3. If V is a finite dimensional vector space of dimension n, then show that any set of more than n vectors in V is linearly dependent.
4. Suppose that V is a vector space. Show that any set of linearly independent vectors in V can be extended to a basis for V (you can use the result of the theorem in number 4).
5. If W_{1} and W_{2} are two finite-dimensional subspaces of a vector space V, show

$$
\operatorname{dim} W_{1}+\operatorname{dim} W_{2}=\operatorname{dim}\left(W_{1} \cap W_{2}\right)+\operatorname{dim}\left(W_{1}+W_{2}\right) .
$$

6. If \mathcal{B} and \mathcal{B}^{\prime} are two ordered bases for a vector space V, show that there is an invertible matrix P such that $[\alpha]_{\mathcal{B}^{\prime}}=P[\alpha]_{\mathcal{B}}$.
7. If $T: V \rightarrow W$ is a linear transformation from a finite-dimensional vector space V to a vector space W, show that

$$
\operatorname{rank}(T)+\operatorname{nullity}(\mathrm{T})=\operatorname{dim} V .
$$

8. If $T: V \rightarrow W$ is an invertible linear transformation, then show that $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ is a basis for V if and only if $\left\{T\left(\alpha_{1}\right), \ldots, T\left(\alpha_{n}\right)\right\}$ is a basis for W.
9. Show that the row rank of any matrix A is equal to its column rank.
