Sample WeBWorK problems.

1. (1 pt) The inequality $6 x+10>3$ means that x is greater than A where A is
2. (1 pt) The inequality $2 x+7 \leq x+10 \leq 3 x+6$ means that x is in the closed interval $[A, B]$ where A is: and B is:
3. (1 pt) Solve the inequality $x^{2}+6 x-27<0$. The solution is x is in the open interval (A, B) where A is: and B is:
4. (1 pt) You arrive in Paris and the forcast is for a low of 20 and a high of 26 degrees Celsius. What is the forcasted low temperature in Fahrenheit?
What is the forcasted high temperature in Fahrenheit?
5. (1 pt) Your friend from Paris arrives in New York and the forcast is for a low of 54 and a high of 79 degrees Fahrenheit.
What is the forcasted low temperature in Celsius? \qquad What is the focasted high temperature in Celsius?
6. (1 pt) Consider the inequality

$$
4+5 x>4 x+9
$$

The solution of this inequality consists one or more of the following intervals: $(-\infty, A)$ and (A, ∞)

Find A
For each interval, answer YES or NO to whether the interval is included in the solution.
$(-\infty, A)$
(A, ∞)
7. (1 pt) Consider the inequality

$$
x^{2}<3 x+40
$$

The solution of this inequality consists one or more of the following intervals: $(-\infty, A),(A, B)$, and (B, ∞) where $A<B$.

Find A
Find B \qquad
For each interval, answer YES or NO to whether the interval is included in the solution.
$(-\infty, A)$ \qquad
(A, B)
(B, ∞)
8. (1 pt) Consider the inequality

$$
\frac{x-6}{x^{2}(x+4)}>0
$$

The solution of this inequality consists one or more of the following intervals: $(-\infty, A),(A, B),(B, C)$, and (C, ∞) where $A<B<C$.

Find A
Find B \qquad
Find C
For each interval, answer YES or NO to whether the interval is included in the solution.
$(-\infty, A)$ \qquad
(A, B)
(B,C)
(C, ∞)
9. $(1 \mathrm{pt})$ Consider the inequality

$$
\frac{x+7}{x+1}>-2
$$

The solution of this inequality consists one or more of the following intervals: $(-\infty, A),(A, B)$,and (B, ∞) where $A<B$.

Find A
Find B
For each interval, answer YES or NO to whether the interval is included in the solution.
$(-\infty, A)$ \qquad
(A, B)
(B, ∞) \qquad
10. (1 pt) Consider the inequality

$$
\frac{x}{x-1}>\frac{x}{8}
$$

The solution of this inequality consists one or more of the following intervals: $(-\infty, A),(A, B),(B, C)$,and (C, ∞) where $A<B<C$.

Find A
Find B
Find C
For each interval, answer YES or NO to whether the interval is included in the solution.

$(-\infty, A) \square$
$(A, B) \square$
$(B, C) \square$
(C, ∞)

