1. (1 pt) A particle moves along a straight line and its position at time t is given by $s(t)=2 t^{3}-21 t^{2}+36 t$ where s is measured in feet and t in seconds.
Find the velocity (in $\mathrm{ft} / \mathrm{sec}$) of the particle at time $t=0$: \qquad
The particle stops moving (i.e. is in a rest) twice, once when $t=A$ and again when $t=B$ where $A<B . A$ is and B is
What is the position of the particle at time 14 ?
Finally, what is the TOTAL distance the particle travels between time 0 and time 14 ?
2. (1 pt) If a ball is thrown vertically upward from the roof of 64 foot building with a velocity of $112 \mathrm{ft} / \mathrm{sec}$, its height after t seconds is $s(t)=64+112 t-16 t^{2}$. What is the maximum height the ball reaches?
What is the velocity of the ball when it hits the ground (height $0)$?
3. $(1 \mathrm{pt})$ The area of a square with side s is $A(s)=s^{2}$. What is the rate of change of the area of a square with respect to its side length when $s=14$?
4. $(1 \mathrm{pt})$ The population of a slowly growing bacterial colony after t hours is given by $p(t)=5 t^{2}+30 t+150$. Find the growth rate after 4 hours.
5. (1 pt) The cost of producing x units of stuffed alligator toys is $c(x)=0.004 x^{2}+10 x+7000$. Find the marginal cost at the production level of 1000 units.
6. $(1 \mathrm{pt}) \mathrm{A}$ mass attached to a vertical spring has position function given by $s(t)=3 \sin (3 t)$ where t is measured in seconds and s in inches.
Find the velocity at time $t=1$.
Find the acceleration at time $t=1$.
7. $(1 \mathrm{pt})$ The mass of the part of a rod that lies between its left end and a point x meters to the right is $1 x^{4} \mathrm{~kg}$. The linear density of the rod at 3 meters is \qquad $\mathrm{kg} /$ meter and at 3 meters the density is $\quad \mathrm{kg} /$ meter
8. (1 pt) If f is the focal length of a convex lens and an object is placed at a distance p from the lens, then its image will be at a distance q from the lens, where f, p, and q are related by the lens equation

$$
\frac{1}{f}=\frac{1}{p}+\frac{1}{q}
$$

What is the rate of change of p with respect to q if $q=2$ and $f=6$? (Make sure you have the correct sign for the rate.)
9. $(1 \mathrm{pt}) \mathrm{A}$ particle moves along a straight line with equation of motion $s=t^{6}-5 t^{5}$ Find the value of t (other than 0) at which the acceleration is equal to zero.

