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Abstract. In this article, we survey along the historical route the
classification of isoparametric hypersurfaces in the sphere, paying
attention to the employed techniques in the case of four principal
curvatures.

1. Prologue

When writing this survey article, I kept in mind that there had been
an extensive body of research papers on the subject of isoparametric
submanifolds and beyond. With the addition of the comprehensive
books [2, 8] that wrapped up much of what had been known up to the
time of their publications, and the survey articles [60, 61] that went
in-depth beyond the isoparametric category, I would therefore devote
this article primarily to the classification part of the hypersurface case.

As in [16], I once more followed the historical development of the
extensive studies to let the flow of presentation as motivated and seam-
less as possible. The difference from [16] is that I included much more
detailed expositions and proofs in the present article. Since the sub-
ject is so all-encompassing that I was compelled to assume background
knowledge in the first place, a comfortable understanding of symmet-
ric spaces is preferred, for which I would refer to the two volumes by
Loos [42], Volume 2 of Kobayashi and Nomizu [38], and Helgason [32].
Meanwhile, in [14], I wrote a fairly detailed exposition on the com-
prehensive commutative algebra engaged in the isoparametric story, to
which I would thus refer without dwelling more on it than is necessary.
Also, I would only report on the methods entailed in the classification,
in the case of four principal curvatures, done by my collaborators and
myself [7], and subsequently by myself [11, 13, 15], leaving the classifi-
cation in the case of six principal curvatures [22, 44, 45] to the expertise
of the authors themselves.
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The codimension 2 estimates prevalent in the classification derived
and developed from the powerful criterion of Serre on prime ideals is
stressed in this article, whose unifying capacity in conjunction with
the underlying isoparametric geometry lifts us from the jungle of in-
tertwined components of tensors to the canopy of ideals of polynomial
rings, to enable us to see the entire landscape of classification.

I would like to thank the referees for many valuable comments to
better the exposition, and Zhenxiao Xie for his careful reading through
the manuscript during his visit at Washington University.

2. The dawn, 1918-1940

When we stroll along a beach, the last arriving wavefront gently
brushes our feet to a halt, where we often see cusps forming of the
wavefront due to the different speeds at front points. Waves form sin-
gularity. The same phenomenon, if applied to the lenses of our eyes
shone upon by lights refracted through different media with different
resulting speeds, most of us will feel disoriented after some exposure
time, because the formation of wave singularity plays the trick. It
would then be interesting to understand the wavefronts that travel at
a constant speed each moment. This was investigated by Laura [40]
in 1918. He concluded that such wavefronts were either planar, cylin-
drical, or spherical, as our daily experiences would almost certainly
convince us that this is the case, by seeing laser beams of planar wave-
fronts, fluorescent tube light of cylindrical wavefronts, and candle light
of spherical wavefronts.

To see the equations that govern the wavefronts traveling at a con-
stant speed each moment, let us start with the wave equation,

∆φ =
∂2φ

∂t2
.

Wavefronts are level surfaces of φ, at each moment t, which propagate
along the normal directions of the level surfaces. That the wavefront
speed remains constant on each level surface means ds/dt = b(φ) and

(2.1) |∇φ| = change per unit length of φ along the normal = a(φ),

for some smooth functions a and b, where s is the distance by which a
wavefront travels. Therefore, we derive

∂φ

∂t
=
∂φ

∂s

ds

dt
= a(φ)b(φ) := c(φ),

and, as a result,

(2.2) ∆φ =
∂2φ

∂t2
= c′(φ)c(φ).
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Definition 2.1. A smooth function f over a Riemannian manifold is
transnormal if

|∇f | = A(f)

for some smooth function A. A transnormal function is isoparametric
if, for some smooth function B,

∆f = B(f).

Let c be a regular value of an isoparametric function f . The level
surface f−1(c) is called an isoparametric hypersurface.

Somigliana’s paper (1918-1919) brought mean curvature to the fore-
ground.

Theorem 2.1. (Somigliana, [55]) Over R3, a transnormal function f is
isoparametric if and only if each regular level surface of f has constant
mean curvature.

Proof. For each regular level surface M := f−1(c) of a transnormal
function f ,

n = ∇f/|∇f | = ∇f/A(f)

is a unit normal field to M . The shape operator S of the surface M is
S(X) := −dn(X) for a tangent vector X of M . However,

d(∇f)(X) = d(A(f)n)(X) = A′(f) df(X) n + A(f) dn(X)

= A(f) dn(X) = −A(f)S(X).

On the other hand, as a linear operator,

d(∇f) : X 7→ Hessian(f)X.

Taking trace, we obtain

∆f = trace(d(∇f)) = −A(f) trace(S)+ < d(∇f)(n),n >

= −2A(f)H + A′(f)A(f),

where H is the mean curvature of M . In other words,

H = −(B(f)− A′(f)A(f))/2A(f)

is a constant along M if the transnormal f is also isoparametric.
Conversely, ifH is constant along regular level surfaces of the transnor-

mal f , then H is a function of f and so ∆f is a function of f so that
f is isoparametric. �
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In particular, he arrived at the same conclusion that over R3, the
regular level surfaces of an isoparametric function are either all spheres,
all cylinders or all planes.

This theorem was rediscovered later by Segre in 1924 [52] and Levi-
Civita in 1937 [41]. The approach Levi-Civita gave is what we will look
at next.

Theorem 2.2. (Levi-Civita, [41]) Over R3, a transnormal f is isopara-
metric if and only if the two principal curvatures of each regular level
surface are constant.

Proof. Observe first that the integral curves of the unit normal field
n = ∇f/|∇f | are just line segments. In fact, an integral curve c of n
from f = a to f = b assumes the length

Length of c =

∫ b

a

df

|∇f |
=

∫ b

a

df

A(f)
.

On the other hand, for any curve γ(t), 0 ≤ t ≤ 1, beginning and ending
at the two end points of the given integral curve, we have

|df(γ(t))

dt
| = |〈∇f(γ(t)), γ′(t)〉| ≤ A(f(γ(t))|γ′(t)|,

so that

Length of γ =

∫ 1

0

|γ′(t)|dt ≥
∫ 1

0

1

A(f)

df

dt
dt =

∫ b

a

df

A(f)
.

In other words, the given integral curve c assumes the shortest distance
among all curves beginning and ending at its end points, i.e., the in-
tegral curve is a line segment. In view of this observation, instead of
using f to parametrize the level surfaces, we might as well use the arc
length s of the normal lines of an initial level surface to parametrize
other level surfaces, so that

Ms := M + sn

is now the 1-parameter family of level surfaces of the transnormal f ,
where M is the initial level surface with unit normal field n.

Let us calculate the mean curvature Hs of Ms by using the fact that
n is still the unit normal to Ms. The upshot is [49, p. 209]

Hs =
H − sK

1− 2sH + s2K
,

where k1 and k2 are the eigenvalues (the principal curvatures) of the
shape operator S of M , so that H = (k1 + k2)/2, and K = k1k2 is
the Gaussian curvature of M . Therefore, the mean curvature Hs is
constant on Ms for all s, i.e., the transnormal f is isoparametric, if and
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only if H,K are constant on M , if and only if the principal curvatures
k1, k2 are constant.

Case 1. k1 = k2 6= 0. M is a sphere.
Case 2. k1 = k2 = 0. M is a plane.
Case 3. k1 6= k2. One employs dk1 = dk2 = 0 and a bit more surface

geometry to conclude k1k2 = 0 [49, p. 255], so that one of k1, k2 is zero.
Then M is a cylinder. �

Segre then took up the investigation of generalizing the question to
Rn in 1938, followed by Cartan’s look into the hyperbolic space Hn in
the same year.

Theorem 2.3. (Segre, [53]) The same conclusion holds on Rn, namely,
an isoparametric hypersurface, which is a regular level hypersurface of
an isoparametric function f over Rn satisfying

|∇f | = A(f), ∆f = B(f),

is either a hypersphere, a hyperplane, both are totally umbilic (with one
principal curvature), or a cylinder Sk × Rn−1−k.

Theorem 2.4. (Cartan, [3]) The same conclusion holds on the hy-
perbolic space Hn of constant curvature −1, namely, an isoparametric
hypersurface in Hn is either a sphere, a hyperbolic Hn−1, a Euclidean
Rn−1 (i.e., a horosphere), all three being totally umbilic, or a cylinder
Sk ×Hn−k−1.

Proof. (sketch) We show again that there are at most two (constant)
principal curvatures of the shape operator. Indeed, let λ1, · · · , λn−1 be
the principal curvatures of an isoparametric hypersurface in a standard
space form of dimension n with constant curvature C. Then we have

(2.3)
∑
j 6=k

mj
C + λkλj
λk − λj

= 0, summed on j,

referred to by Cartan as the “Fundamental Formula”, which was proven
by Segre in the Euclidean case and by Cartan in general [2, p. 84]. Here,
mj is the multiplicity of λj and λi 6= λj if i 6= j.

Case 1, C = 0. Let λk be the smallest positive principal curvature.
Note that each term, if nontrivial, in the fundamental formula must be
negative, which is a contradiction. Therefore, there are at most two
principal curvatures, one of them is zero if there are two.

Case 2, C = −1. It is easy to see that

(2.4)
C + λkλj
λk − λj

< 0
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if λj ≤ 0 and λk > 0. Consider those positive principal values. If there
is a 0 < λl ≤ 1 such that (λj)

−1 ≤ λl for all λj > 1, we let λk be the
largest positive principal value ≤ 1. It follows that (2.4) is negative for
all those 0 < λj < 1 and for those λj > 1 not reciprocal to λk. We
conclude that none of the positive λj other than the reciprocal of λk
exist. Otherwise, there exists some λj > 1 such that its reciprocal is
greater than the above λk, which we replace by the smallest principal
value > 1. Once more, (2.4) is negative for all positive λj not reciprocal
to λk. We arrive at the same conclusion as in the preceding case. So,
we have at most two principal curvatures reciprocal to each other.

In the case of two distinct principal curvatures λ and µ, the isopara-
metric hypersurface is the product of two simply connected space forms
of constant curvatures λ2 − 1 and µ2 − 1. All these hypersurfaces are
homogeneous.

See [51, Theorem 2.5, p. 373] on the product structure in both
cases. �

The story now takes a fascinating turn when Cartan directed his
attention to the spherical case. Let us denote by g the number of
principal curvatures of an isoparametric hypersurface in the sphere Sn.
He quickly settled the cases when g ≤ 2. For g = 1, the hypersurface is
any sphere in the 1-parameter family of such spheres perpendicular to
the axis of the North and South poles of Sn; note that the 1-parameter
family degenerates to the South and North poles. For g = 2, the
hypersurface is any one in the 1-parameter family of the product of
two subspheres of the form Sk × Sn−k−1 whose points are given in
coordinates as (x0, · · · , xk, xk+1, · · · , xn), where

x2
0 + · · ·+ x2

k = r2, x2
k+1 + · · ·+ x2

n = s2, r2 + s2 = 1,

which degenerates to the two manifolds Sk and Sn−k−1 of radius 1 as r
approaches 0 or 1. We refer to [51] for a proof. All these hypersurfaces
are homogeneous.

Then Cartan worked on the case g = 3. A priori, the three principal
values could potentially carry distinct multiplicities, which was ruled
out by him. He went on to classify and was amazed by the beauty
of such hypersurfaces, as one can tell from the title of his 1939 pa-
pers [4], [5]:

Theorem 2.5. Let g = 3.
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I. Over the ambient Euclidean space Rn+1 ⊃ Sn, there is a homo-
geneous polynomial F of degree 3, satisfying

|∇F |2 = 9r2, r = |x| for x ∈ Rn+1,

∆F = 0,
(2.5)

whose restriction to Sn is exactly the isoparametric function f .
The range of f is [−1, 1] with ±1 the only critical values. Thus
f−1(c),−1 < c < 1, form a 1-parameter family of isoparametric
hypersurfaces that degenerates to the two critical sets f−1(1)
and f−1(−1).

II. The three principal values have equal multiplicity m = 1, 2, 4,
or 8.

III. The two critical sets of f are the real, complex, quaternionic,
or octonion projective plane corresponding to the principal mul-
tiplicity m = 1, 2, 4, or 8. Each isoparametric hypersurface in
the family is a tube around the projective plane.

IV. Let F be one of the normed algebras R,C,H, and O. Let X, Y, Z ∈
F and a, b ∈ R. Then

F = a3 − 3ab2 +
3a

2
(XX + Y Y − 2ZZ)

+
3
√

3b

2
(XX − Y Y ) +

3
√

3

2
((XY )Z + (XY )Z).

(2.6)

In particular, all these hypersurfaces are homogeneous.
His proof was an algebraic analysis of the homogeneous polynomial F

of degree 3, nowadays called the Cartan-Münzner polynomial (see the
next section for more expositions on it). He expanded the polynomial
at a point p of, say, the critical (or, focal) manifold f−1(1) with the
coordinate u parametrizing Rp and x1, · · · , xn parametrizing (Rp)⊥.
He observed that the equations (2.5) dictated that

F = u3 + P (x)u+Q(x),

where P (x) is quadratic and Q(x) is cubic homogeneous in x. Sub-
stituting this into the equations in (2.5), he found that there was an
integer m such that

P =
3

2
(x2

1 + · · ·+ x2
2m)− 3(x2

2m+1 + · · ·+ x2
3m+1), n = 3m+ 1.

In fact,
w0 := x2m+1, · · · , wm := x3m+1

constitute the normal coordinates to the focal manifold in Sn at p. It
follows that the isoparametric hypersurface is of equal multiplicity m
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by identifying any of the three principal spaces of its shape operator
with the normal space to a point on the associated focal manifold.

He then turned to Q(x), which he expanded into

Q = A3 + A2 + A1 + A0,

where Ai is of degree i in x1, · · · , x2m and degree 3 − i in w0, · · · , wm
and deduced that A3 = A1 = A0 = 0 so that

Q = Q0z0 + · · ·+Qmzm

for some homogeneous quadratic polynomialsQ0, · · · , Qm in x1, · · · , x2m

that are in fact the components of the second fundamental form of the
focal manifold at p. Since the principal curvatures of the focal manifold
are cot(π/3) and cot(2π/3) (see (4.10) below for details), only differing
by a sign, he diagonalized Q0 so that

Q0 =
3
√

3

2
(x2

1 + · · ·+ x2
m − y2

1 − · · · − y2
m),

by reindexing the coordinates y1 := xm+1, · · · , ym := x2m. He then set
Ha := Qa/3

√
3 for 1 ≤ a ≤ m and concluded

H2
1 + · · ·+H2

m = (x2
1 + · · ·+ x2

m)(y2
1 + · · ·+ y2

m),

or, in other words, the map

L : (x, y) ∈ Rm × Rm 7→ (H1(x, y), · · · , Hm(x, y)) ∈ Rm

satisfies |L(x, y)| = |x||y|, i.e., it is an orthogonal multiplication [34],
from which he deduced that m = 1, 2, 4, or, 8.

With the expressions of P and Q pinned down, he set v := w0 and
wrote down

F = u3 − 3uv2 +
3

2
u

m∑
i=1

(x2
i + y2

i )− 3u
m∑
i=1

w2
i

+
3
√

3

2
v

m∑
i=1

(x2
i − y2

i ) +
m∑
i=1

wiQi(x, y).

This is exactly (2.6) when we employ the orthogonal multiplications L,
which give rise to the products of the four normed algebras.

Thanks to [36], [37], [18], we have geometric alternatives to the proof,
which were inspired, directly or indirectly, by Münzner’s fundamental
papers [46] that entered the stage in the early 1970s.

We will derive (2.6) in Subsection 4.3 for the real case, using a Lie-
theoretic approach.

Next, Cartan worked on the case g = 4 [6]. The situation got much
more complicated. So, he assumed equal multiplicities m to the four



THE ISOPARAMETRIC STORY, A HERITAGE OF ÉLIE CARTAN 9

principal values and pointed out that the hypersurface satisfies the
equations

|∇F |2 = 16r2, r = |x| for x ∈ Rn+1,

∆F = 0.

He indicated the classification without proof in the cases when m =
1, or 2, by writing down the respective 4th degree Cartan-Münzner
polynomials. When m = 1, the polynomial is (4.1) below for k = 3,
whereas when m = 2, the polynomial is defined over the Euclidean
space so(5,R), where an element Z ∈ so(5,R) is written as(

Z1 Z2 Z3 Z4 Z5

)
by five column vectors, for which the polynomial is

(2.7) F (Z) :=
5

4

∑
i

|Zi|4 −
3

2

∑
i<j

|Zi|2|Zj|2 + 4
∑
i<j

(〈Zi, Zj〉)2,

with respect to which he studied geometric properties of these two hy-
persurfaces. Both are homogeneous. It is quite evident that in the
paper he had in mind the isotropy representations of the rank-2 sym-
metric spaces SO(5)×SO(5)/∆(SO(5)), ∆ denoting the diagonal map,
and SO(10)/U(5), respectively.

He left us with three natural questions:

(Cartan, 1940 [5])

(i) What are the possible g?
(ii) Is equal multiplicity of principal curvatures always true?
(iii) Are all isoparametric hypersurfaces homogeneous?

Before proceeding, let us make the following slightly more general
definition of an isoparametric hypersurface than the one in Defini-
tion 2.1, though they turn out to be equivalent through Münzner’s
work.

Definition 2.2. A hypersurface in Sn is isoparametric if all its prin-
cipal curvatures are constant with fixed multiplicities. Let M be an
isoparametric hypersurface in Sn. The number of principal curvatures
of M is denoted by g.

3. The dormancy, 1941-1969

When I was a student at Stanford, I had a few times of working as a
TA for David Gilbarg. During a chat he said that he had been trained
as an algebraist working under Emil Artin. But war had a better
dictation over everything. Upon graduation he was designated to work
on partial differential equations in the wartime, from that point on it
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was a point of no return for him. Mathematics more on the “pure”
side essentially ground to a halt.

Diversified activities awakened and resumed after the war. One of
the most notable was the vibrancy in the field of algebraic and dif-
ferential topology, which led to the profound discoveries in the 1950-
60s, from which the stage was set for the revival of the isoparametric
story. At the same time, algebraic geometry also experienced a gigantic
transformation in which the theory of schemes via ideals changed its
landscape.

4. The Renaissance, 1970-1979

4.1. Nomizu, Takagi and Takahashi’s work on homogeneous
isoparametric hypersurfaces. Nomizu wrote two papers to start
this period in the early 1970s, in which he constructed examples [47]
that answered the second question of Cartan in the negative and re-
viewed Cartan’s work [48].

Indeed, consider Ck = Rk ⊕ Rk and write z ∈ Ck as z = x +
√
−1y

accordingly. Define a homogeneous polynomial of degree 4 on Ck by

F̃ = (|x|2 − |y|2)2 + 4(〈x, y〉)2.

Then f̃ := F |S2k−1 is an isoparametric function whose regular level sets
form a 1-parameter family of isoparametric hypersurfaces with four
principal values and multiplicities {1, k − 2}.

The isoparametric hypersurfaces (respectively, all the above isopara-
metric hypersurfaces by Cartan) are the principal isotropy orbits of the
symmetric spaces SO(k+2)/S(2)×SO(k) (respectively, of appropriate
symmetric spaces of rank 2 to be seen in Subsection 4.3).

Note that f̃ has range [0, 1]. So, we normalize it by defining f :=

1− 2f̃ , or rather, by setting

(4.1) F := (|x|2 + |y|2)2 − 2F̃ .

F is an isoparametric function such that f has range [−1, 1].
Note also that

f−1(1) := {(x, y) : |x|2 = |y|2 = 1/2, 〈x, y〉 = 0},

the Stiefel manifold of oriented 2-frames, which is orientable, whereas

f−1(−1) = {z ∈ Ck : z = e
√
−1θ v, v ∈ Sk−1, θ ∈ [0, 2π)},

which is doubly covered by S1 × Sk−1 and is not orientable when k is
odd, as was pointed out by Cartan in [6] in the case of multiplicity pair
(1, 1) for k = 3.
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At about the same time Takagi and Takahashi [58] classified homo-
geneous isoparametric hypersurfaces in spheres, which are the principal
orbits of isotropy representations of simply connected symmetric spaces
of rank 2. They also calculated the number g of principal curvatures to
be 1, 2, 3, 4, or 6, and, moreover, verified that there were at most two
distinct multiplicities, in the homogeneous category. We begin with a
definition.

Definition 4.1. A connected hypersurface M in a smooth Riemannian
manifold X is homogeneous if I(X,M), the group of isometries of X
leaving M invariant, acts transitively on M .

It is clear that, for such a hypersurface, the principal curvatures
of its shape operator are everywhere constant, counting multiplicities.
Hence, they are isoparametric.

Theorems 2.3 and 2.4 classify all isoparametric hypersurfaces in Rn

and Hn to be exactly the homogeneous hypersurfaces in these space
forms. What is interesting is then the spherical case.

Recall a representation ρ : G ↪→ SO(n+1) acting on Rn+1 is effective
if every nontrivial element in G displaces some vector in Rn+1. Now,
let I(M) be the group of isometries of M and let ι : I(Sn,M)→ I(M)
be the restriction map. Let I0(Sn,M) be the connected component of
the identity of I(Sn,M) and let G := ι(I0(Sn,M)).

Proposition 4.1. [50, II, p. 15] ι : I0(Sn,M)→ G is an isomorphism,
so that ι−1 : G ↪→ SO(n + 1) is an effective representation on Rn+1

with M an orbit. Furthermore, M is compact, and so in particular G
is compact and hence is a Lie group.

Definition 4.2. An effective representation ρ : G ↪→ SO(n+ 1) acting
on Rn+1 is of cohomogeneity r if the smallest codimension of all orbits
of ρ is r in Rn+1.

In particular, the representation ι above of a homogeneous hyper-
surface in Sn is of cohomogeneity 2.

Definition 4.3. Given an effective representation ρ : G ↪→ SO(n+ 1)
of cohomogeneity r, ρ is maximal if there is no effective representation
ρ1 : G1 :↪→ SO(n + 1) of cohomogeneity r such that G is a proper
subgroup of G1 with ρ(g) = ρ1(g) for all g ∈ G.

Proposition 4.2. [50, p. 16]

(1) The effective representation ι : G ↪→ SO(n + 1) in Proposi-
tion 4.1 is a maximal effective representation of cohomogeneity
2.
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(2) Let ρ : G ↪→ SO(n + 1) be a maximal effective representation
of cohomogeneity 2. Let M be a G-orbit of codimension 2 in
Rn+1. Then ρ(G) = I0(Sn,M).

(3) In particular, any maximal effective representation ρ : G ↪→
SO(n + 1) is obtained as the representation of a homogeneous
hypersurface in Sn.

(4) Two homogeneous hypersurfaces M and N in Sn are equivalent,
i.e., N = f(M) for an f ∈ O(n+1), if and only if I0(Sn,M) '
I0(Sn, N) through the isomorphism g 7→ fgf−1.

Therefore, the classification of homogeneous hypersurfaces in Sn is
equivalent to first classifying maximal effective orthogonal representa-
tions ρ : G ↪→ SO(n+ 1) of cohomogeneity 2 and then classifying their
orbits of codimension 2. Hsiang and Lawson classified all maximal or-
thogonal representations in [33]. They are closely tied with what are
called the s-representations of symmetric spaces. We will return to this
in Subsection 4.3.

4.2. Münzner’s work on the general case. Münzner [46] (preprint
circulating in 1973) established a breakthrough result that developed
Cartan’s work, recorded in Theorem 2.5, in a far-reaching manner:

Theorem 4.1. Let M be any isoparametric hypersurface with g prin-
cipal curvatures in Sn. Then we have the following.

(1) There is a homogeneous polynomial F , called the Cartan-Münzner
polynomial, of degree g over Rn+1 satisfying

(4.2) |∇F |2 = g2r2g−2, ∆F =
m− −m+

2
g2rg−2,

where r is the radial function over Rn+1.
(2) Let f := F |Sn. Then the range of f is [−1, 1]. The only critical

values of f are ±1. Moreover, M± := f−1(±1) are connected
submanifolds of codimension m± + 1 in Sn, called focal mani-
folds, whose principal curvatures are cot(kπ/g), 1 ≤ k ≤ g − 1.

(3) For any c ∈ (−1, 1), f−1(c) is an isoparametric hypersurface
with at most two multiplicities m± associated with the principal
curvatures. In fact, if we order the principal curvatures λ1 >
· · · > λg with multiplicities m1, · · · ,mg, then mi = mi+2 with
index modulo g; in particular, all multiplicities are equal when g
is odd, and when g is even, there are at most two multiplicities
equal to m±.

(4) Each of the 1-parameter isoparametric hypersurfaces is a tube
around each of the two focal manifolds, so that Sn is obtained
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by gluing two disk bundles over M± along the isoparametric hy-
persurface M0 := f−1(0). As a consequence, algebraic topology
implies that the only possible values of g are 1, 2, 3, 4, or 6.

Indeed, start with an isoparametric hypersurface

x : M ↪→ Sn

whose principal curvatures are set to be

λj = cot(θj), 0 < θ1 < · · · < θg < π,

with respect to the outward normal field n. Let us consider the parallel
transport of M ,

(4.3) xt := cos(t)x+ sin(t)n,

which is the counterpart to the Euclidean parallel transport along the
normal direction. A priori, Mt := xt(M) is an embedding for small t.
Since

nt := − sin(t)x+ cos(t)n

is normal to Mt, a straightforward calculation derives that the principal
curvatures of Mt, with respect to the chosen normal field nt, are

λj(t) = cot(θj − t)(4.4)

with the same eigenspace and multiplicity as λj. On the other hand,
for a fixed l, the eigenspace of λl from point to point defines an inte-
grable distribution, called the l-th curvature distribution, on M with
spheres of radius | sin(θl)| as leaves. This can be directly checked by
differentiating

fl(x) := x+ vl(x)/|vl(x)|2, vl(x) := −x+ cot(θl)n,

to see that fl(x) is a constant cl on the l-th curvature leaf through x;
we have

(4.5) cl = cos(θl)(cos(θl)x+ sin(θl)n),

i.e., the unit vector pointing in the same direction as cl assumes the
angle θl on the unit circle oriented from x to n. Now that the curvature
leaf through x is a sphere of radius | sin(θl)| centered at cl, the antipodal
point to x on this leaf gives the reflection map φl about cl:

φl(x) := x+ 2vl(x)/|vl(x)|2 = cos(2θl)x+ sin(2θl)n,

i.e., φ(x) is the point of reflection of x about the line spanned by cl on
the (x, n)-plane. Therefore, by (4.4), the principal curvatures of M at
φl(x) are

(4.6) − cot(θj − 2θl), 1 ≤ j ≤ g,
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with the same eigenspaces and multiplicities as x. Note that the sign
in (4.6) differs from that in (4.4), because the circle xt leaves M at x
and enters M at φ(x), so that n2θl at φ(x) is negative of the chosen
outward normal field n of M at φ(x). Since M has constant principal
curvatures, counting multiplicities, we conclude that the following sets

(4.7) {cot(θj)}, {cot(2θl − θj)}
are identical for all j, l, and two numbers, one from each set, having
the same index j have the same principal multiplicity mj, regardless of
what l is.

Now, (4.7) means that the lines Lj spanned by cj on the (x, n)-plane,
all through the origin, satisfies the property that the reflection of Lj
about any Ll is another Lk. It follows that these lines Lj, 1 ≤ j ≤ g,
are equally spaced in the (x, n)-plane so that

θj = (j − 1)π/g + θ1.

Thus, the reflections about the lines Lj result in mi = mi+2 with index
modulo g. Accordingly, we denote m1 and m2 by m+ and m−, respec-
tively. (This is reminiscent of a root system and its Weyl chambers.)

Having done so, Münzner went on to construct a local isoparametric
function, which is nothing but an appropriate distance function, in a
neighborhood of M , already observed by Cartan for g = 3, as follows.
Any p in a tubular neighborhood U of M can be written uniquely as

p = cos(t)x+ sin(t)n

for some small t. Define

µ(p) := θ1 − t, V (p) = cos(g µ(p)).

Extend V (p) to a neighborhood of M in the ambient Euclidean space
by defining

F (rp) = rgV (p),

where r is the Euclidean radial function.

Theorem 4.2. F is in fact a homogeneous polynomial of degree g
satisfying

|∇F |2 = g2r2g−2, ∆F = g2m− −m+

2
.

Proof. (Sketch) Define

G := F − arg,
where

a :=
g

g + n− 1

m− −m+

2
.
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Then verify that
∆G = 0.

In general, it is true that for a harmonic function G over Rn+1, we have

(4.8) ∆g|∇G|2 =
∑

(∂g+1G/∂xi1 · · · ∂xig+1)
2.

On the other hand, for theG engaged in our consideration, a calculation
gives

|∇G|2 = g2r2g−2(1 + a2)− 2ag2rg−2F.

We therefore find
∆g−1|∇G|2 = c

with c an appropriate constant. F is thus a homogeneous polynomial
by (4.8). �

Now that F is globally analytic over Rn+1, we set f := F |Sn . A
calculation by the formulae

|∇F |2 = (
∂F

∂r
)2 + |∇f |2, ∆f = ∆F − ∂2F

∂r2
− n∂F

∂r
derives, by Theorem 4.2, that

|∇f |2 = A(f), ∆f = B(f),

where

A(f) = g2(1− f 2), B(f) = −g(n+ g − 1)f +
m− −m+

2
g2.

So, f is an isoparametric function on Sn. Note that A(f) = 0 only at
f = ±1, so that the range of f is [−1, 1] and ±1 are the only critical
values. Let M± := f−1(±1) be the singular set. Sn \ (M+ ∪M−) is
open and dense and is diffeomorphic to Mc × (−1, 1) for any fixed c,
where Mc := f−1(c) for c ∈ (−1, 1).

A priori, Mc might not be connected. We claim that this is not the
case. Define

d : M × (0, π/g)→ Sn, d(x, µ) = cos(θ1 − µ)x+ sin(θ1 − µ)n.

Then
f(d(x, µ)) = cos(gµ)

by the analytic nature of f because f |U = V and the identity holds on
U ; in particular, M is contained in Mc with c = cos(gθ1). But then the
map

(4.9) dc : Mc× (0, π/g)→ Sn, dc(x, µ) = cos(θ1−µ)x+sin(θ1−µ)n

also satisfies f(dc(x, µ)) = cos(gµ) and

dc : Mc × (0, π/g)→ Sn \ (M+ ∪M−)
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is a diffeomorphism. From this we see that the map

h : Mc → Sn, x 7→ cos(θ1)x+ sin(θ1)n

maps Mc to M+. Observe that h(x) points in the same direction as c1

for the curvature leaf through x whose tangent space is the eigenspace
with principal value cot(θ1), where c1 is defined in (4.5). It follows
that h : Mc → M+ is a sphere bundle whose fiber is a curvature leaf
diffeomorphic to Sm+ . Meanwhile, it is easy to check that dh has
kernel dimension m+; at x, the derivative dh preserves eigenspaces of
all principal values other than that of cot(θ1). Therefore, M+ is a
manifold of dimension dim(M)−m+, which is of codimension at least
2 in Sn. Likewise, the codimension of M− is at least 2 in Sn.

Returning to the map (4.9), we see now Sn \(M+∪M−) is connected
as M+ and M− are of codimension at least 2 in Sn. Therefore, that
dc is a diffeomorphism ensures that Mc is connected, for all c. As a
consequence, M± are also connected via the map h.

Lastly, since h(x) = xθ1 defined in (4.3), we see by (4.4) that the
principal values of M+, in any normal direction, are

(4.10) cot(θj − θ1) = cot((j − 1)π/g), 2 ≤ j ≤ g.

This also holds true for M−.
We remark that the sphere bundle property via the map h holds

true over any complete Riemannian manifold when we only assume
transnormality [62], though the focal manifolds need not be connected
in general.

Corollary 4.1. M± are minimal submanifolds of Sn. The minimality
condition is exactly equation (2.3), the fundamental formula of Segre
and Cartan, when C = 1.

Proof. By the preceding formula, the mean curvature of M+ in any
normal direction is

g−1∑
j=1

cot(jπ/g) = 0,

which is the fundamental formula (2.3). �

Corollary 4.2. There is a unique minimal isoparametric hypersurface
in the 1-parameter family Mt.

Proof. By (4.4), the mean curvature of Mt is

H :=

g∑
j=1

cot(θj − t)
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for t ∈ (0, π/g). H is strictly increasing as the derivative is > 0. Near
t = θ1 < π/g the function is > 0 whereas near θ = π/g − θ1 > 0 the
function is < 0. Therefore, there is a unique t ∈ (0, π/g) at which
H = 0. �

Now that Sn is obtained by gluing two disk bundles over the fo-
cal manifolds M± along an isoparametric hypersurface M , Münzner
used algebraic topology to express the cohomology ring of M , with
Z2 coefficients, as modules of those of M±, whose intertwining module
structures via Steenrod squares then give the remarkably short list that
g = 1, 2, 3, 4, or 6! Thus, it answered the first question of Cartan.

4.3. The homogeneous case in retrospect. Now that we have a
grand view of the structure of isoparametric hypersurfaces thanks to
Münzner’s theorem, let us return to the homogeneous case, this time
with more geometric insight.

Definition 4.4. An s-representation of rank r is the isotropy rep-
resentation of a connected, simply connected semisimple Riemannian
symmetric space of rank r. Here, if the symmetric space is decomposed
into its irreducible components, the rank is the sum of the ranks of the
components.

An s-representation of rank 2 is either the isotropy representation of
two irreducible symmetric spaces of rank 1, or of an irreducible symmet-
ric space of rank 2. Note that R×M, where M is irreducible symmetric
of rank 1, is also of rank 2, although its isotropy representation is not
an s-representation.

In connection with classifying homogeneous hypersurfaces in Sn, we
are particularly interested in the isotropy representations of simply con-
nected noncompact symmetric spaces of rank 2, because of the theorem
of Hsiang and Lawson [33] on the classification of all maximal effective
orthogonal representations ρ : G ↪→ SO(n+ 1) of cohomogeneity 2:

Theorem 4.3. Up to equivalence, the maximal effective orthogonal
representations ρ : G ↪→ SO(n+ 1) of cohomogeneity 2 are exactly the
isotropy representations of the simply connected noncompact symmetric
spaces of rank 2, i.e., the isotropy representations of

(1) R × Hn, where the principal orbits are spheres Sn−1 ⊂ Sn ⊂
Rn+1,

(2) Hp×Hq, where the principal orbits are Sp−1×Sq−1 ⊂ Sp+q−1 ⊂
Rp+q, and

(3) the noncompact irreducible symmetric spaces of rank 2, where
principal orbits are those of s-representations.
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More generally, Dadok’s classification [19] shows that any polar rep-
resentation is orbit equivalent to an s-representation. See also [24], [25]
for a more conceptual proof.

The principal orbits of the first two items in Theorem 4.3 are easy
to visualize. Item (1) is the isotropy representation of O0(1, n) on the
hyperbolic space Hn identified with O0(1, n)/SO(n) as a symmetric
space, where O0(1, n) is the identity component of O(1, n) and SO(n)
is identified with

K = {
(

1 0
0 A

)
, A ∈ SO(n)}.

Thus, it gives the standard orthogonal representation SO(n) on Rn,
whose typical principal orbit is the sphere Sn−1. The Euclidean factor
in item (1) acts trivially, so that a principal orbit of codimension 2 of
the isotropy representation is Sn−1 ⊂ Sn ⊂ Rn+1. In the same vein,
a typical principal orbit of the isotropy representation in item (2) is
Sp−1 × Sq−1 ⊂ Sp+q−1 ⊂ Rp+q.

In particular, we have g = 1 or 2 for the homogeneous spaces in the
first two items of Theorem 4.3. The isoparametric hypersurfaces with
g = 1 or 2, classified by Cartan, are exactly the ones in the first two
items.

Let us study item (3) in Theorem 4.3, where the principal orbits give
rise to all homogeneous isoparametric hypersurfaces with g ≥ 3 in the
sphere.

Let G/K be a noncompact irreducible symmetric space of rank 2
(which is automatically simply connected) with the Cartan decompo-
sition G = K ⊕M. Fix a v 6= 0 ∈ M. We know [32, p. 247] there
is a k ∈ K such that Ad(k) · v ∈ A, where A is the maximal abelian
subspace of M. Therefore, we may assume without loss of generality
that v ∈ A.

Proposition 4.3. With the setup above, an orbit Ad(K) · v, where
v ∈ A, is principal of codimension 2 if and only if v lies in a Weyl
chamber.

Proof. The isotropy subgroup L of Ad(K) leaving v fixed has the Lie
algebra

L := {X ∈ K : [X, v] = 0}.

We have the root space decomposition

(4.11) 0 = adh(Z) =
∑
λ∈Σ

λ(h)Zλ
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with h ∈ A and Zλ ∈ Gλ, and so

G = N0 ⊕
∑
λ∈Σ

Gλ,

where N0 is the centralizer of A in G.
If v belongs to a Weyl chamber, then λ(v) 6= 0 for all λ ∈ Σ, so that

by (4.11) Xλ = 0 for all λ ∈ Σ. In other words, X ∈ L if and only if
X ∈M0 := N0 ∩ K, the centralizer of A in K.

By [32, Lemma 3.6, p. 261], we knowM0 has the same codimension
in K as A in M, i.e.,

dim(Ad(K)/L) = dim(K)− dim(L) = dim(M)− dim(A).

Thus, the isotropy orbit is of codimension dim(A) = 2.
If v lies in a chamber wall, then by (4.11) X ∈ L if and only if

X ∈M0 ⊕
∑

λ,λ(v)6=0

(Gλ ∩ K).

Therefore, the codimension of the orbit of v is larger than 2. �

Corollary 4.3. The isotropy representation of an irreducible noncom-
pact symmetric space of rank 2 has only two singular orbits and a 1-
parameter family of diffeomorphic principal orbits of codimension 2
degenerating to the two singular orbits.

Proof. In the rank 2 case, a Weyl chamber is a sector of the plane of
angle measure π/3 for A2, π/4 for B2, and π/6 for G2. Let us say
θ0 < θ < θ0 + π/l, l = 3, 4, 6, defines the chamber. Then the pre-
ceding proposition says that for any unit v assuming angle θ in the
chamber, its isotropic orbit is homogeneous (and hence isoparamet-
ric) of codimension 2 and is diffeomorphic to Ad(K)/L. So, we have
a 1-parameter family of diffeomorphic homogeneous isoparametric hy-
persurfaces. At the two chamber walls, i.e., when v assumes the angle
θ0 or θ0 + π/l, the dimension of the orbit drops. Meanwhile, since the
normalizer of A serves as the Weyl group by Theorem 4.5 below, we
see that the isotropic orbit of v intersecting the chamber plane at some
points v1 = v, v2, · · · , v2l, one in each chamber. So the isotropic repre-
sentation has only two singular orbits, even though there are 2g Weyl
chambers. All other orbits are principal of codimension 2. �

Proposition 4.4. With the same setup, Ad(k)(A) is the normal plane
to the principal orbit Ad(K)(v) at Ad(k)(v) for v ∈ A.

Proof. It suffices to check this at v, where the tangent space of the
orbit is

Tv = {[h, v] : h ∈ K}.
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But then for w ∈ A, we have

〈w, [h, v]〉 = 〈[v, w], h〉 = 0,

since the inner product is proportional to the Killing form, �

Proposition 4.5. With the same setup, let w be a unit vector perpen-
dicular to v in A, and extend it to a global normal field on the principal
orbit Ad(K) · v, |v| = 1, in the unit sphere of M. The shape operator
Sw of the orbit at v satisfies that the eigenvalues are

−λ(w)/λ(v),

where λ are reduced positive roots such that λ/2 /∈ Σ. The eigenspace
associated with the above eigenvalue is

Eλ = Gλ ⊕ G−λ ⊕ G2λ ⊕ G−2λ.

In particular, g, the number of principal curvatures of the shape opera-
tor, is 3, 4, or 6. If we label the principal curvatures by λ1 > · · · > λg
and their multiplicities by m1, · · · ,mg, then mi = mi+2, where the sub-
scripts are modulo g. In particular, the multiplicities are all equal when
g = 3. Moreover, if we choose the angles

θi = (2i− 1)π/2g, i = 1, · · · , g,
to coordinatize the positive roots, then the principal curvatures are

λi = tan(θ − θi), −π/g < θ < π/g,

when v assumes the angle θ and w the angle θ + π/2.

Proof. As mentioned in the preceding proposition, a vector X tangent
to the orbit is of the form

X = [k, v] = −
∑
λ∈Σ

λ(v)Xλ

for k ∈ K. Since

n = Ad(K) · w
is a normal vector field to the orbit, the shape operator is

S(X) := −dn(X) = −[X,w] =
∑
λ∈Σ

λ(w)Xλ.

Therefore, we obtain

−λ(v)S(Xλ) = λ(w)Xλ.

Since v is regular we have λ(v) 6= 0 for all λ ∈ Σ. It follows that

S(Xλ) = −λ(w)/λ(v)Xλ.



THE ISOPARAMETRIC STORY, A HERITAGE OF ÉLIE CARTAN 21

The principal curvatures of S are thus−λ(w)/λ(v), attained by±λ,±2λ,
so that the eigenspace Eλ with the principal curvature −λ(w)/λ(v) is
the desired one, where λ need only go through the positive roots λ
for which λ/2 /∈ Σ, which form a reduced root system. The number of
positive roots in the A2, B2, or G2 root system is 3, 4, or 6, respectively,
which is g.

We choose the angles θi = (2i− 1)π/2g to coordinatize the positive
roots. We see the Weyl group is generated by

(4.12) θ 7→ π/g − θ, θ 7→ θ + 2π/g.

By Theorem 4.5, the Weyl group preserves the principal curvatures and
their multiplicities. Hence, mi = mi+2 with index modulo g.

Lastly, since

v = (cos(θ), sin(θ)), w = (− sin(θ), cos(θ)), λi = (cos(θi), sin(θi)),

we calculate

−λi(w)/λi(v) = −〈w, λi〉/〈v, λi〉 = tan(θ − θi).
�

Let us now look at

F (θ) := sin(gθ), −π/2g < θ < π/2g.

It is left invariant by the two generators of the Weyl group in (4.12).
In fact, F (θ) is the restriction to the unit circle of the homogeneous
polynomial of degree g

(4.13) FA :=

[(g−1)/2]∑
0

(
g

2i+ 1

)
(−1)ixg−(2i+1)y2i+1

defined by the maximal abelian space A. FA is left invariant by the
Weyl group.
Theorem 4.4. [38, p. 299] The space of homogeneous polynomials on
M left invariant by Ad(K) is isomorphic to the space of homogeneous
polynomials on A left invariant by the Weyl group.

This theorem is called Chevalley Restriction Theorem. In [38], the
proof is given for a compact Lie group, or for a symmetric space of
Type II. But the proof there can be modified easily to arrive at the
preceding theorem in view of a characterization of the Weyl group:

Theorem 4.5. [32, p. 284, p. 289] Let (G,K, σ) be an irreducible
Riemannian symmetric space of noncompact type. Let

M := {k ∈ K : Ad(k)·v = v,∀v ∈ A}, M ′ := {k ∈ K : Ad(k)·A ⊂ A}.
Then M ′/M is the Weyl group.
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The last ingredient for constructing the Cartan-Münzner polynomial
in the homogeneous category is the following theorem of Chevalley.

Theorem 4.6. [9] The space of homogeneous polynomials on a maxi-
mal abelian space A of dimension r left invariant by the Weyl group is
generated by r algebraically independent polynomials.

Since r = 2 in our case and we have found two generators, namely,
x2 +y2 and FA on A, the space of homogeneous polynomials left invari-
ant by Ad(K) onM of dimension n is thus generated by (x1)2 + · · ·+
(xn)2 and a homogeneous polynomial F of degree g whose restriction
to the circle is FA.
F , homogeneous of degree g, thus leaves each isotropic orbit invari-

ant. Therefore, we conclude the following.

Theorem 4.7. There is a homogeneous polynomial F of degree g,
called the Cartan-Münzner polynomial, for g = 3, 4, 6, on M, whose
restriction f to the unit sphere ofM satisfies the property that its range
is [−1, 1]. For each c ∈ (−1, 1), f−1(c) is a homogeneous (isoparamet-
ric) hypersurface degenerating to two singular submanifolds f−1(±1).
The statement is clearly true when g = 1 or 2. All homogeneous hy-
persurfaces in spheres are constructed this way.

We remark that for g = 1 in the preceding theorem, the polynomial
is F = xn+1 over Rn+1, while for g = 2 the polynomial is F = (x1)2 +
· · ·+ (xr)

2 − (xr+1)2 − · · · − (xr+s)
2 over Rr+s.

Example. We find F in the case g = 3 when the symmetric space is
SU(3)/SO(3) of Type I and rank 2.

LetM be the space of 5-dimensional 3 by 3 real traceless symmetric
matrices. The Cartan decomposition is

su(3) = so(3)⊕
√
−1M, K = so(3).

M is equipped with the inner product

〈Y, Y 〉 := tr(Y Y ) = α2 + β2 + γ2 + x2 + y2 + z2,

which is a multiple of the Killing form of su(3) restricted toM, where
we write

Y :=

 α x/
√

2 y/
√

2

x/
√

2 β z/
√

2

y/
√

2 z/
√

2 γ

 , α + β + γ = 0.

The isotropic action is the adjoint action

Ad(T ) : V ∈M 7→ TV T−1 ∈M, T ∈ SO(3).
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The diagonal block of M is the maximal abelian subspace A of M.
The three positive roots are

α1 :=

1 0 0
0 −1 0
0 0 0

 /
√

2, α2 :=

0 0 0
0 1 0
0 0 −1

 /
√

2, α3 :=

1 0 0
0 0 0
0 0 −1

 /
√

2,

where α1 and α2 are simple roots. We choose the unit angle bisector
as the standard basis element

e1 := (2α1 + α2)/
√

6,

and

e2 := α2.

Then e1, e2 form an orthonormal basis of A, so that an element in M
relative to e1, e2 is

X := ae1 + be2 =

2a/
√

6 0 0

0 b/
√

2− a/
√

6 0

0 0 −b/
√

2− a/
√

6

 ,

and the Y above is

Y :=

2a/
√

6 x/
√

2 y/
√

2

x/
√

2 b/
√

2− a/
√

6 z/
√

2

y/
√

2 z/
√

2 −b/
√

2− a/
√

6

 .

Now, it is clear that det(Y ) is Ad(SO(3))-invariant. We calculate

det(X) =
1

3
√

6
(a3 − 3ab2) =

1

3
√

6
FA,

where FA is given in (4.13), when we set

a = cos(π/6− θ), b = sin(π/6− θ), −π/6 < θ < π/6.

It follows that

F := 3
√

6 det(Y )

restricts to FA and so F is the Cartan polynomial given in Theorem 4.7.
A calculation shows F is exactly the polynomial given in (2.6) by Car-
tan in the case when F is R.

Note that f , the restriction of F to the unit sphere, has range [−1, 1]
and f−1(±1) are the two singular submanifolds, both being the projec-
tive plane. To see this, we set θ = ±π/6. Then, respectively,

X =

2/
√

6 0 0

0 −1/
√

6 0

0 0 −1/
√

6

 ,

1/
√

6 0 0

0 1/
√

6 0

0 0 −2/
√

6

 .
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Let us find the isotropy group L of the isotropy action on X, where L
consists of all T ∈ SO(3) commuting with X. We see L is in diagonal
block form. Hence,

L ' S(O(1)×O(2)),

so that the singular orbits are

Ad(SO(3))/L = SO(3)/S(O(1)×O(2)) = RP 2.

A look at the tables for the symmetric spaces of rank 2 of Types I
and II shows that there are four such spaces with g = 3, which are

SU(3)/SO(3), SU(3)× SU(3)/∆(SU(3)× SU(3)),

SU(6)/Sp(3), E6/F4,

whose Cartan polynomials of their isotropic orbits are the ones given
in (2.6).

As in the SU(3)/SO(3) case, the singular orbits of the other three
examples are, respectively, the complex, quaternionic and octonion pro-
jective planes. The principal orbits are tubes around the projective
planes.

The following grid table is the collection of all symmetric spaces G/K
of Types I and II whose isotropy representations give homogeneous
isoparametric hypersurfaces M . There are at most two multiplicities
(m+,m−) for the g principal curvatures.

G K dimM g (m+,m−)
S1 × SO(n+ 1) SO(n) n 1 (1, 1)
SO(p+ 1)× SO(n+ 1− p) SO(p)× SO(n− p) n 2 (p, n− p)
SU(3) SO(3) 3 3 (1, 1)
SU(3)× SU(3) SU(3) 6 3 (2, 2)
SU(6) Sp(3) 12 3 (4, 4)
E6 F4 24 3 (8, 8)
SO(5)× SO(5) SO(5) 8 4 (2, 2)
SO(10) U(5) 18 4 (4, 5)
SO(m+ 2),m ≥ 3 SO(m)× SO(2) 2m− 2 4 (1,m− 2)
SU(m+ 2),m ≥ 2 S(U(m)× U(2)) 4m− 2 4 (2, 2m− 3)
Sp(m+ 2),m ≥ 2 Sp(m)× Sp(2) 8m− 2 4 (4, 4m− 5)
E6 (Spin(10)× SO(2))/Z4 30 4 (6, 9)
G2 SO(4) 6 6 (1, 1)
G2 ×G2 G2 12 6 (2, 2)
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4.4. Ozeki and Takeuchi’s work on inhomogeneous examples
for g = 4. Based on Münzner’s work, Ozeki and Takeuchi [50, I] con-
structed two classes, each with infinitely many members, of inhomoge-
neous isoparametric hypersurfaces with g = 4. This answered Cartan’s
third question in the negative.

They also classified all isoparametric hypersurfaces with g = 4 when
one of the multiplicities is 2, which are all homogeneous [50, II].

An important ingredient in their work is their expansion formula
of the Cartan-Münzner polynomial, which was inspired by Cartan’s
approach to the classification for g = 3 mentioned in Section 2. The
central theme is to study the focal manifolds, the singular set of the 1-
parameter family of isoparametric hypersurfaces, to recover properties
of the hypersurface. They fixed a point x on either one of the focal
manifolds, say, M+, and decomposed the ambient Euclidean space by
Rx, with coordinate t, the tangent space to M at x in Sn, where a
typical vector is denoted by y, and the normal space to M+ at x in
Sn, where a typical vector is denoted by w with coordinates wi with
respect to a chosen orthonormal basis n0,n1, · · · ,nm+ . They expanded
the Cartan-Münzner polynomial in t, with undetermined coefficients in
y and w, and substituted it into the two equations in (4.2) to result in

F (tx+ y + w) = t4 + (2|y|2 − 6|w|2)t2 + 8(

m+∑
a=0

pawa)t

+ |y|4 − 6|y|2|w|2 + |w|4 − 2

m+∑
a=0

(pa)
2 + 8

m+∑
a=0

qawa

+ 2

m+∑
a,b=0

〈∇pa,∇pb〉wawb,

(4.14)

where pa(y) (respectively, qa(y)) is the a-th component of the 2nd (re-
spectively, 3rd) fundamental form of M+ at x. Furthermore, pa and
qa are subject to ten defining equations [50, I, pp 529-530], of which
the first three assert that, since Sn, the 2nd fundamental matrix of
M+ in any unit normal direction n, has eigenvalues 1,−1, 0 with fixed
multiplicities, it must be that

(4.15) (Sn)3 = Sn

for all n. We will return to the ten identities later.
Ozeki and Takeuchi then introduced Condition A, where a point p

on a focal manifold, say M+, is of Condition A if the shape operators
Sn at p share the same kernel for all n.
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Indeed, given a normal basis n0, · · · , nm+ at x with the associated
shape operators S0, · · · , Sm+ , let E0, E1, E−1 be the eigenspaces of S0

with eigenvalues 0, 1,−1, respectively. Relative to the chosen orthonor-
mal bases of E0, E1, E−1, we have the matrix representations of the
shape operators

(4.16) S0 =

Id 0 0
0 −Id 0
0 0 0

 , Sa =

 0 Aa Ba

Atra 0 Ca
Btr
a Ctr

a 0


for 1 ≤ a ≤ m+, where Aa : E−1 → E1, Ba : E0 → E1 and Ca : E0 →
E−1.

Condition A means that Ba = Ca = 0 for all 1 ≤ a ≤ m+ at
x. Consider n := (na + nb)/

√
2 and substitute Sn into (4.15) we can

extract

(4.17) AaA
tr
b + AbA

tr
a = 2δab Id, Atra Ab + Atrb Aa = 2δab.

This implies that the symmetric matrices

(4.18) T0 :=

(
I 0
0 −I

)
, Ta :=

(
0 Aa
Atra 0

)
, 1 ≤ a ≤ m+,

induce a symmetric Clifford C ′1+m+
-module structure on R2m− , so that

R2m− is decomposed into k irreducible C ′1+m+
modules for some k, and

thus

2m− = k θm+ = 2kδm+ ,

where, following the standard notation, θs denotes the dimension of an
irreducible C ′s+1-module while δs denotes that of an irreducible skew-
symmetric Clifford Cs−1-module satisfying the periodicity δs+8 = 16 δs
with δ1, · · · , δ8 being 1, 2, 4, 4, 8, 8, 8, 8, respectively. See Definition 5.1
and what immediately follows it in the next section for a more detailed
account.

They focused on the case when δ1+m+ = 1 +m+, i.e., the case when
the dimension of an irreducible module of Cm+ is 1 + m+. It is well
known that m+ = 1, 3, or 7, which they verified by the above pe-
riodicity formula for δs. As a consequence m− is a multiple of 2, 4,
8, respectively. Now, complex multiplication on C give the only ir-
reducible representation of C1, whereas left and right quaternionic or
octonion multiplications give the only two distinct irreducible Cm+-
representations in the cases m+ = 3, or 7, respectively. Each such
irreducible skew-symmetric Clifford representation A1, · · · , Am+ recon-
structs a symmetric Clifford representation C ′1+m+

via (4.18), and vice
versa. Putting k such symmetric Clifford representations together, we
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recover the second fundamental form, given in (4.16), of M+ of codi-
mension 1 +m+ = 2, 4, or 8 in Sn.

Having determined the second fundamental form, they introduced
Condition B. For each tangent vector y decomposed into y = y0 + y1 +
y−1 relative to the eigenspaces E0, E1, E−1 of the shape operator S0,
they stipulated that

qa(y) =

m+∑
b=1

rab(y0) pb(y), 1 ≤ a, b ≤ m+

for some 1st-degree polynomials rab linear in y0, to be a candidate for
the polynomial in (4.14). They substituted Condition B into the ten
defining equations of an isoparametric hypersurface with four princi-
pal curvatures and eventually determined the third fundamental form,
and hence the Cartan-Müzner polynomial. Since the multiplicity pair
(m+,m−) does not appear on the list of those of homogeneous exam-
ples when m+ is 3 or 7, they found the first examples of inhomogeneous
isoparametric hypersurfaces with four distinct principal curvatures and
multiplicity pair (3, 4k) and (7, 8k) in the sphere.

Conditions A and B would play a major role in later development.
We note that Takagi [57] classified the case when g = 4 and one

of the multiplicities is 1. They are congruent to the aforementioned
examples of Nomizu, and hence are homogeneous. His method is to also
expand the Cartan-Münzner polynomial at a focal point and analyze
the algebraic structures constrained by (4.2).

5. The enlightenment, 1980-1999

5.1. 1980-1989. Now that the two questions of Cartan were answered,
the next question naturally came down to the possible multiplicity pairs
(m+,m−) of the g principal curvatures. The 1980s started with the
paper of Ferus, Karcher, and Münzner that constructed an infinite 2-
dimensional array of multiplicity pairs each of which is associated with
an isoparametric hypersurface, most of them inhomogeneous, which
include the examples of Ozeki and Takeuchi.

To motivate their work, let us return to the examples of Nomizu (4.1).
Set

P0 :=

(
I 0
0 −I

)
, P1 :=

(
0 I
I 0

)
, u := (x, y)tr,

where I is the k by k identity matrix. Then F can be rewritten as

F = |u|4 − 2
1∑
i=0

〈Piu, u〉2, PiPj + PjPi = 2δijI.
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Ferus, Karcher and Münzner’s construction is a far-reaching general-
ization of this.

Definition 5.1. The skew-symmetric (respectively, symmetric) Clif-
ford algebra Cn (respectively, C ′n) over R is the algebra generated by
the standard basis e1, · · · , en of Rn subject to the only constraint

eiej + ejei = −2δijI (respectively, eiej + ejei = 2δijI).

The classification of the Clifford algebras is known [34]:

n 1 2 3 4 5 6 7 8
Cn C H H⊕H H(2) C(4) R(8) R(8)⊕ R(8) R(16)
δn 1 2 4 4 8 8 8 8
C ′n R⊕ R R(2) C(2) H(2) H(2)⊕H(2) H(4) C(8) R(16)
θn 2 4 8 8 16 16 16 16

Here, δn is the dimension of an irreducible module of Cn−1, and θn is
the dimension of an irreducible module of C ′n+1. Moreover, Cn (respec-
tively, C ′n) is subject to the periodicity condition Cn+8 = Cn ⊗ R(16)
(respectively, C ′n+8 = C ′n ⊗ R(16)). The generators e1, · · · , en acting
on each irreducible module of either Cn or C ′n in the grid table give
rise to n skew-symmetric or symmetric orthogonal matrices T1, · · · , Tn
satisfying

TiTj + TjTi = ±2δij Id,

yielding a representation of Cn or C ′n on the irreducible module, re-
spectively. Note that we have

θn = 2δn.

This is not coincidental. It says that we can construct symmetric rep-
resentations of C ′m+1 from skew-symmetric representations of Cm−1,
and vice versa. Indeed, let us be given k irreducible representations
V1, · · · , Vk of Cm−1. Set

V := V1 ⊕+ · · · ⊕ Vk ' Rl, l = kδm.

The representations of e1, · · · , em−1 on V1, · · · , Vk result in m−1 skew-
symmetric orthogonal matrices E1, · · · , Em−1 on V . Set

P0 :=

(
I 0
0 −I

)
, P1 :=

(
0 I
I 0

)
, P1+i =

(
0 Ei
−Ei 0

)
, 1 ≤ i ≤ m−1.

Then
PiPj + PjPi = 2δij Id.

P0, · · · , Pm generate a representation of C ′m+1 on R2l.
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The Cartan-Münzner polynomials of the examples of Ferus, Karcher
and Münzner are

(5.1) F := 2|u|4 − 2
m∑
i=0

(〈Piu, u〉)2, u ∈ R2l, l = kδm.

Note that we recover Nomizu’s example when m = 1.
By a straightforward calculation, we conclude the following [30].

Proposition 5.1. The two multiplicities of the associated isoparamet-
ric hypersurface are

(m, kδm −m− 1),

where m, k ∈ N to make the second entry positive, and the Clifford ac-
tion operates on the focal manifold of codimension 1+m in the ambient
sphere. Moreover, for m ≡ 0 (mod 4), there are [k/2] + 1 incongruent
isoparametric hypersurfaces associated with each multiplicity pair, to
be indicated by [k/2] underlines in the following grid table.

k
δm 1 2 4 4 8 8 8 8 16 · · ·

1 – – – – (5, 2) (6, 1) – – (9, 6) · · ·
2 – (2, 1) (3, 4) (4, 3) (5, 10) (6, 9) (7, 8) (8, 7) (9, 22) · · ·
3 (1, 1) (2, 3) (3, 8) (4, 7) (5, 18) (6, 17) (7, 16) (8, 15) (9, 38) · · ·
4 (1, 2) (2, 5) (3, 12) (4, 11) (5, 26) (6, 25) (7, 24) (8, 23) (9, 54) · · ·

5 (1, 3) (2, 7) (3, 16) (4, 15) (5, 34) (6, 33) (7, 32) (8, 31) (9, 70) · · ·
...

...
...

...
...

...
...

...
...

...
...

Among other things, Ferus, Karcher, and Münzner established

Theorem 5.1. (1) The multiplicity pairs of the homogeneous isopara-
metric hypersurfaces with four principal curvatures are precisely
those listed in the first, second, and fourth columns of the table,
together with (9, 6) and the two pairs (2, 2) and (4, 5) not listed
on the table.

(2) The isoparametric hypersurfaces with multiplicity pairs in the
third and seventh columns are exactly the inhomogeneous ex-
amples constructed by Ozeki and Takeuchi.

So, except for the first, second and fourth columns, we have infinitely
many families, each with infinitely many members, of inhomogeneous
isoparametric hypersurfaces with four principal curvatures. Note that
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we also have the fact that such a hypersurface with multiplicity pair
(1, l) or (2, l) is congruent to the one with multiplicity pair (l, 1) or
(l, 2) [30, 6.5]. Note also that Cartan classified the cases when the
multiplicities are {1, 1} and {2, 2}, both being homogeneous [6].

Of particular interest is that the authors proved that the focal man-
ifold M−, of the inhomogeneous family with multiplicity pair (m =
m+,m−) = (3, 4k) constructed by Ozeki and Takeuchi, is homogeneous
while M+ is not. On the other hand, the two inhomogeneous examples
of multiplicity pair (m = m+,m−) = (8, 7) constructed by the authors
have the property that both focal manifolds of the indefinite isopara-
metric hypersurface, i.e., the one with P0 · · ·P8 6= ±Id, are inhomoge-
neous, whereas for the definite one, i.e., the one with P0 · · ·P8 = ±Id,
M+ is homogeneous while M− is not, so that, in particular, the two hy-
persurfaces are not congruent; moreover, neither of them is congruent
to the one with multiplicity pair (m = m+,m−) = (7, 8) constructed by
Ozeki and Takeuchi. All of these properties were proved via geometric
methods without resorting to the aforementioned classification in the
homogeneous category. In fact, they showed through geometric means
that most of the examples on the list are inhomogeneous.

Coming next to the arena is the thesis of Abresch [1], in which he
added a projective structure, in the case of g = 4, or 6, to the topo-
logical structure of Münzner so that now Stiefel-Whitney classes come
into play with Steenrod squares to obtain the following:

Assume m− ≤ m+. If g = 4, then

(4A): m− + m+ + 1 is divisible by 2k := min{2σ : 2σ > m−, σ ∈
N}, or,

(4B1): m− is a power of 2 and 2m− divides m+ + 1, or,
(4B2): m− is a power of 2 and 3m− = 2(m+ + 1).

Moreover, if g = 6, then

m− = m+ = 1, or 2.

Based on Abresch’s work, Dorfmeister and Neher [22] succeeded in
classifying the case when g = 6 and m+ = m− = 1. It is the homoge-
neous space.

Grove and Halperin [31] established that when g = 4, m+ = m−
only when (m+,m−) = (1, 1), or (2, 2). As mentioned above, Cartan
indicated without proof [6] that the hypersurfaces are homogeneous
in both cases, for which an outline was laid out in [50] for the (2, 2)
case and a detailed proof following the outline was done by Tom Cecil
(unpublished notes). The crucial step is to establish the existence of a
point of Condition A mentioned below (4.15). In fact, in Cartan’s
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formula (2.7), one can show that the element e := (e12 + e34)/
√

2
assuming F (e) = −1 is a point of Condition A, where eij ∈ so(5,R),
i < j, is the matrix whose only nonzero entries are at (i, j) and (j, i)
slots with value 1 and -1, respectively.

5.2. 1990-1999. Tang [59] pursued Abresch’s setup further and ob-
tained the refined result for g = 4 that states that no isoparametric hy-
persurfaces of type 4B1 or 4B2 exist if m− 6= 1, 2, 4, or 8, while Fang [27]
followed up to assert that the multiplicity pairs (2, 2) and (4, 5) are the
only possibilities in the case of 4B2. For type 4A, Fang [26] settled a
large portion of the multiplicity problem:

Theorem 5.2. Suppose g = 4 and m+ ≤ m−. Then m+ + m− + 1 is
divisible by δ(m+) if m+ ≡ 5, 6, 7(mod 8). In particular, the multiplicity
pairs (m+,m−),m+ ≤ m−, of isoparametric hypersurfaces with four
principal curvatures are exactly those in the above grid table of the
examples constructed by Ferus, Karcher, and Münzner, provided m+ ≡
5, 6, 7(mod 8).

The multiplicity problem was finally settled by the remarkable paper
of Stolz [56]:

Theorem 5.3. Let g = 4. The multiplicity pairs (m+,m−),m+ ≤
m−, of isoparametric hypersurfaces with four principal curvatures are
exactly those in the above grid table of the examples constructed by
Ferus, Karcher, and Münzner, besides the pairs (2, 2) and (4, 5) not in
the grid table.

He established that if (m+,m−),m+ ≤ m−, is neither (2, 2) nor (4, 5),
then m+ + m− + 1 is a multiple of 2φ(m−−1), where φ(n) denotes the
number of numerals s, 1 ≤ s ≤ n, such that s ≡ 0, 1, 2, 4 (mod 8).
In particular, one can see easily that such pairs (m+,m−) are exactly
those in the grid table of Ferus, Karcher, and Münzner.

His approach is reminiscent of the theorem of Adams:

Theorem 5.4. If there are k independent vector fields on Sn, then
n+ 1 is a multiple of 2φ(k).

The core technique Adams developed for proving the above theorem
on vector fields was to what Stolz reduced his proof.

Fang also showed [28] that, when g = 6, the isoparametric hyper-
surface is diffeomorphic (respectively, homotopic) to the homogeneous
example when the equal multiplicity is 1 (respectively, 2); the state-
ment in fact holds true in the more general proper Dupin category.

Gary Jensen, Tom Cecil, and I started thinking seriously about
the classification of isoparametric hypersurfaces with four principal
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curvatures around 1998-1999. When I saw Stolz’s result, I said to
myself:“Ha-ha! What else could such a hypersurface be, except for the
ones of Ferus, Karcher, and Münzner?”

6. The classification

6.1. 2000-2009. We spent quite a lot of time working at understand-
ing the underlying geometry of the Ferus-Karcher-Münzner examples
in the early 2000s. Let us look at (5.1) more closely, where we set
m = m+ for convenience. M+ is of codimension 1 + m in Sn defined
by quadrics,

M+ := {x ∈ Sn : 〈P0(x), x〉 = · · · = 〈Pm(x), x〉 = 0}.
Its unit normal sphere at x is

(UN)x := {P (x) : P =
m∑
i=0

aiPi,
m∑
i=0

a2
i = 1},

where P constitute a round sphere Sm in the linear space of symmetric
matrices of size (n + 1) × (n + 1) equipped with the inner product
〈A,B〉 := −tr(AB)/2. The map

P ∈ Sm 7−→ P (x) ∈ UNx,

is an isometry for each x ∈M+.
Consider the unit normal bundle UN of M+ with the natural pro-

jection
π : UN −→M+.

The Levi-Civita connection on M+ naturally splits the tangent bundle
of UN into horizontal and vertical bundles H and V , respectively,

T (UN) = V ⊕H.
At each n ∈ UN with base point x, the shape operator Sn at x admits
three eigenspaces En

0 , E
n
1 , E

n
−1 with eigenvalues 0, 1,−1. Explicitly, for

n = P (x),

〈Sn(v), w〉 = −〈P (v), w〉, v, w tangent at x,

so that, in particular, it is easily checked by a dimension count that

(6.1)

En
0 = span{PQ(x) : Q ⊥ P in Sm},

En
1 = {v : P (v) = −v, v ⊥ Q(x) ∀Q ∈ Sm},

En
−1 = {v : P (v) = v, v ⊥ Q(x) ∀Q ∈ Sm},

which are lifted to UN to further splitH into three subbundles E0, E1, E−1,
respectively, so that

(6.2) T (UN) = V ⊕ E0 ⊕ E1 ⊕ E−1.
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Now, for each P ∈ Sm, the set

FP := {P (x) : x ∈M+} ⊂ UN,

defines the section

(6.3) sP : M+ −→ UN, x : 7−→ P (x).

The tangent space to FP at P (x) is, by (6.1),

(6.4) T (FP ) = G ⊕ E1 ⊕ E−1,

where G is the graph of the orthogonal bundle map

P : E0 −→ V , PQ(x) 7−→ Q(x), ∀Q ⊥ P ∈ Sm.
In other words, as P varies in Sm, we can define the distribution

(6.5) ∆ := G ⊕ E1 ⊕ E−1,

which is integrable (involutive) with leaves FP .
Conversely, let g = 4. Suppose we are given an isoparametric hy-

persurface M ⊂ Sn with the focal manifolds M±. We let m := m+

and let UN be the unit normal bundle of M+. As above, we have the
decomposition (6.2). Suppose now there is an orthogonal bundle map

(6.6) O : E0 −→ V ,
which gives rise to a distribution ∆ defined similarly as in (6.5) by the
graph G of O. We wish to find a characterization of the integrability
of ∆.

To this end, we let Xa, Xp, Xα, Xµ be an orthonormal frame span-
ning, respectively, V , E0, E1, E−1 over T (UN), where a, p, α, µ denote
the indexes parametrizing the corresponding spaces with

(6.7)
1 ≤ a ≤ m = m+, m+ 1 ≤ p ≤ 2m,

2m+ 1 ≤ α ≤ 2m+m−, 2m+m− + 1 ≤ µ ≤ 2m+ 2m−.

This convention will be enforced henceforth. We then let θa, θp, θα, θµ

be the dual frame to the orthonormal frame. We set

ωij := 〈dXj, Xi〉,
and write

(6.8) ωij =
∑
k

F i
jkθ

k,

where without the specification in (6.7) indexes are understood to take
values in all possible index ranges. By (6.8),

(6.9)
Fα
pa = −SXa(Xα, Xp), F µ

pa = SXa(Xµ, Xp),

F µ
αa = SXa(Xα, Xµ)/2,
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the respective components of the shape operator in the normal direction
Xa, where by a slight abuse of notation we useXp, Xα, Xµ to also denote
their pushforwards via π : UN →M+.

We will see the geometric meaning of F µ
αp later.

Isoparametricity of M imposes many constraints on F i
jk, which is not

our concern here (see [7, p.16]).
Now the orthogonal bundle map O in (6.6) gives a choice of Xa once

Xp are given, namely, we may specify

(6.10) Xp−m := −O(Xp).

With this choice it follows that the distribution ∆ in (6.5) is the kernel
of θa + θa+m; differentiating while invoking the structural equations for
dθi (see [7, (5.1), p. 16]), we obtain

Proposition 6.1. [10, p. 137] ∆ is integrable if and only if

(6.11)

F µ
αp = F µ

αp−m,

Fα
a+mb = −Fα

b+ma,

F µ
a+mb = −F µ

b+ma.

Let us understand the geometric meaning of this proposition. Each
local integral leaf of ∆ now gives rise to a local section

(6.12) s : M+ −→ UN, x 7−→ n(x),

similar to the one in (6.3). Now, a special feature of g = 4 is that any
normal n(x) ∈ π−1(x) also lives in M+ (see the discussions in Section
4.2); for clarity of notation, we denote n(x) by x# ∈M+. Furthermore,
the normal space Nx# to M+ at x# is

(6.13) Nx# = Rx⊕ E0,

where E0, E1, E−1 are the eigenspaces of the shape operator Sn(x) at
x with eigenvalues 0, 1, and −1, respectively. We may now find the
eigenspaces E#

0 , E
#
1 , E

#
−1 of the shape operator Sx at x# ∈M+ to be

E#
0 = n(x)⊥ ⊂ Nx = the normal space at x,

E#
±1 = E±1.

It becomes evident now, in view of (6.9) and (6.13), that

F µ
αp represents the component S(Xα, Xµ)/2 of the second fundamen-

tal form of M+ at x# in the normal direction Xp ∈ Nx# ,
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for which we have the identity [7, (5.6), p.16]

(6.14)
m∑
a=1

(F µ
αaF

ν
β a + F µ

β aF
ν
α a) =

2m∑
p=m+1

(F µ
αpF

ν
β p + F µ

β pF
ν
α p).

Note that the local map

fs : x ∈M+ −→M+, x 7−→ x#,

that the section s in (6.12) induces is a local isometry on M+, where

(fs)∗ maps v± ∈ E±1 to ∓v± ∈ E#
± , and maps v0 ∈ E0 to w0 := O(v0) ∈

E#
0 .

Proposition 6.2. [10, p. 138] Assume ∆ is integrable. The local
isometries fs of M+ extend to ambient isometries of Sn for all s if and
only if

(6.15) ωab − ωa+m
b+m =

∑
p

Lpb a(θ
p−m + θp)

for some smooth functions Lpb a.

The idea is to show that the local isometries fs, preserving the first
fundamental form, also preserve the second fundamental form and the
normal connection form if and only if the four sets of identities hold.
As a result, the analyticity of isoparametricity now implies that the
local isometries are in fact global ones.

We can now fix an x0 ∈M+ and consider the unit normal m-sphere
π−1(x0). Through each n ∈ π−1(x0) there passes a unique section sn
of ∆ whose associated local isometry fsn is now a global one induced
by an isometry Pn of Sn that extends fsn . We thus have an Sm-worth
of isometries P of the ambient sphere inducing isometries of M+. Ana-
lyzing how the Sm-worth of the ambient isometries P interact with the
expansion formula (4.14) of Ozeki and Takeuchi confirms the following.

Proposition 6.3. [10, 142-154] Assuming (6.11) and (6.15), the Sm-
worth of ambient isometries P form a round sphere in the linear space
of symmetric matrices of size (n+ 1)× (n+ 1) equipped with the stan-
dard inner product, so that the isoparametric hypersurface M is one
constructed by Ferus, Karcher, and Münzner.

The proof in [7, 33-51] of this proposition was through extremely
long calculations by differential forms with remarkable cancellations!
In contrast, the different proof in [10] is considerably shorter and more
conceptual. On the other hand, the former is entirely local and the
intuition behind it is also rather clear, in that since isoparametric
hypersurfaces are defined by an overdetermined differential system,
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exterior-differentiating enough times should result in sufficiently many
constraints for the conclusion.

Note that the three equations in (6.11) are algebraic in F i
jk while

the fourth one in (6.15) is a system of PDEs in them. It would be
desirable if (6.15) could be suppressed. This is indeed possible if M+

is “sufficiently curved”. More precisely, we introduce the following
definition.

Definition 6.1. [7, p. 19] The unit normal bundle UN of M+ satisfies
the spanning property at some n over base point x, if there is an X in
E1 such that

S(X, ·) : E−1 −→ n⊥

is surjective, and there is a Y in E−1 such that

S(·, Y ) : E1 −→ n⊥

is surjective, at x. Here, E0, E1, E−1 are the eigenspaces of the shape
operator Sn at x with eigenvalues 0, 1, and −1, respectively, and n⊥ is
the orthogonal complement of n in the normal space at x.

Equivalently, the spanning property is equivalent to the local condi-
tions that the Euclidean vector-valued bilinear form

(6.16) B(X, Y ) := (
∑
αµ

F µ
α 1 xαyµ,

∑
αµ

F µ
α 2 xαyµ, · · · ,

∑
αµ

F µ
αm xαyµ)

for α, µ in the specified range in (6.7) satisfies that B(X, ·) : Rm− 7→ Rm

is surjective for some X, and B(·, Y ) : Rm− → Rm is surjective for some
Y .

Proposition 6.4. [7, Proposition 19, p. 28] Suppose the unit normal
bundle UN of M+ satisfies the spanning property at some n. Then
around n the first equation in (6.11), i.e., F µ

αa = F µ
αa+m, implies the

remaining equations in (6.11) and (6.15).

The proof utilizes the spanning property and various identities [7,
pp. 16-17] of covariant derivatives of F i

jk.
In view of Propositions 6.3 and 6.4, it suffices to find conditions to

warrant

(6.17) F µ
αa = F µ

αa+m, ∀α, µ, with the spanning property,

for the isoparametric hypersurface with four principal curvatures to be
one constructed by Ferus, Karcher, and Münzner.

Note that Takagi’s classification said at the end of Section 4 readily
follows now. In this case, m = 1, a = 1 and p = 2 = a + m in (6.7).
From (6.14), one reads off

F µ
αa = ±F µ

αa+m
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for all α and µ, where we can assume the sign is positive. Meanwhile,
we need to verify that the spanning property holds. Suppose it is not
true and B(X, ·) is the zero map for every X in (6.16). Then it must
be that B = 0 with m = 1 gives that F µ

α 1 = 0 for all µ, α. Now, with
a = 1, (4.16) extracts out of (4.15) the identity

(6.18) A1A
tr
1 + 2B1B

tr
1 = Id, A1 =

(
F µ
αa

)
= 0,

so that

Btr
1 =

(
Fα=2m+1
p a , · · · , Fα=2m+m−

p a

)
satisfies B1B

tr
1 = Id/2. This is impossible, whence follows Takagi’s

classification.
It is at this point that algebraic geometry comes into play. We refer

the reader to [14] for a rather detailed account of the commutative
algebra to be employed in the following. Since the algebro-geometric
method in [7] is superseded by the simpler and more effective method
that prevails in [11], [13], [15], to be discussed later, I will only indicate
briefly the inductive steps that are engaged by looking at the case when
m = 2 classified by Ozeki and Takeuchi in [50, II]. Let us first look at
the spanning property.

Lemma 6.1. [50, II, p. 45] If m− ≥ m + 2, then each of the m
polynomials

pa(x, y) :=
∑
αµ

F µ
αa xαyµ, 1 ≤ a ≤ m,

is irreducible.

Proof. Note that

4pa(x, y) = 〈
(
x
y

)
,

(
0 Aa
Atra 0

)(
x
y

)
〉,

where Aa is given in (4.16). Hence,

rank(pa) = 2 rank(Aa),

where rank(pa) is that of the symmetric matrix

U :=

(
0 Aa
Atra 0

)
.

Let

V := Sa − U
(for notational ease, we use U to also denote its augmentation by zeros
to match the size of Sa). We have rank(Sa) ≤ rank(U)+rank(V ). Since
Sa is similar to S0, we know rank(Sa) = 2m−, whereas it is clear that
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rank(U) = 2 rank(Aa) and rank(V ) ≤ 2m. Putting these together, we
derive

(6.19) 2(m− −m) ≤ 2 rank(Aa) = rank(pa).

If pa is reducible, then pa = fg for two linear polynomials f and g of
the form

f =
∑
α

aαxα +
∑
µ

aµyµ, g =
∑
α

bαxα +
∑
µ

bµyµ.

Let
a :=

(
aα aµ

)tr
, b :=

(
bα bµ

)tr
of size 2m−× 1. Then 4pa = (abtr + batr)/2 has rank ≤ 2. Thus (6.19)
implies m− ≤ m+ 1, a contradiction. �

Lemma 6.2. If m− ≥ m+ 1, then the polynomials pa, 1 ≤ a ≤ m, are
linearly independent.

Proof. Suppose they are linearly dependent. There are nonzero con-
stants, c1, · · · , cm, not all zero, such that

0 = c1A1 + · · ·+ cmAm =
√
c2

1 + · · ·+ c2
mAn

for some unit normal n. So, we may assume without loss of generality
that A1 = 0. But then (6.18) results in B1B

tr
1 = Id/2, which means

that the row vectors of B1 of size m−×m are linearly independent, so
that m− ≤ m. This is absurd. �

Note that both lemmas are equally good if we complexify the poly-
nomials pa, as they have real coefficients.

In the case of m = 2 in the classification of Ozeki and Takeuchi [50,
II], since the two polynomials p1 and p2 are irreducible and linearly
independent, one cannot be a constant multiple of the other. We con-
clude that if f p1 + g p2 = 0 for two polynomials f and g in x and y,
then p2 divides f . We can put this succinctly in the language of regular
sequences in commutative algebra.

Definition 6.2. [14, Definition 1, p. 84] A regular sequence in the
complex polynomial ring P [l] in l variables is a sequence p0, · · · , pk in
P [l] such that firstly the variety defined by p0 = · · · = pk = 0 in Cl

is not empty. Moreover, pi is a non-zerodivisor in the quotient ring
P [l]/(p0, · · · , pi−1) for 1 ≤ i ≤ k; in other words, any relation

p0f0 + · · ·+ pi−1fi−1 + pifi = 0

will result in fi being in the form

fi = p0h
i
0 + · · ·+ pi−1h

i
i−1
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for some hi0, · · · , hii−1 ∈ P [l] for 1 ≤ i ≤ k.

A regular sequence imposes strong algebraic independence amongst
its elements [14, 2.3, p. 91].

Proposition 6.5. (Special case) [7, p. 62] Assume m = 2 and m− ≥
4. We use pC1 and pC2 to denote the complexification of p1 and p2. Let
V C

2 be the variety carved out by pC1 = pC2 = 0. Then dim(V C
2 ) = 2m−−2.

In particular, the spanning property is true.

Proof. pC1 and pC2 are irreducible by Lemma 6.1. It is well known that
the irreducible pC1 cuts out an irreducible variety V1 and the irreducible
pC2 cuts out the variety V2 of pure codimension 1 in V1 since they are
linearly independent [54, Theorem 5, p.58]. In particular, the real
counterpart V2 of V C

2 satisfies

dim(V2) ≤ 2m− − 2.

We claim the equality holds. To this end, consider the map

V2
ι−→ Rm− × Rm− π1−→ Rm− ,

where ι is the standard embedding and π1 is the projection onto the
first summand. Also, for each x ∈ Rm− , consider the map

Sx2 : y −→ (p1(x, y), p2(x, y)).

Note that

(6.20) dim(kernel(Sx2 )) ≥ m− − 2 > 0,

and the kernel of Sx2 is exactly the set

{y ∈ Rm− : (x, y) ∈ (π1 ◦ ι)−1(x)}.
Hence, the map π1 ◦ ι is surjective. Now, the set

Z := {x ∈ Rm− : kernel(Sx2 ) assumes the minimum dimension t}
is Zariski open. So, by Sard’s theorem, there is an irreducible compo-
nent W of V2 whose image via π1 ◦ ι contains a regular value x ∈ Z,
so that (π1 ◦ ι)−1(q) ' Rt for q in a neighborhood of x; in other words,
(π1 ◦ ι)−1(Z) around x in W is a product. We conclude, by (6.20),

dim(W ) = t+m− ≥ m− +m− − 2 = 2m− − 2.

Consequently, the claim

(6.21) dim(W ) = 2m− − 2

is proven. In particular, t = m− − 2.
A by-product is that around this regular value x, we enjoy the prop-

erty
dim((π1 ◦ ι)−1(x)) = t = m− − 2,
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or, that Sx2 is surjective, so that the spanning property is true for some
x. Likewise, the spanning property is true for some y. �

Let us next investigate the validity of (6.17). In view of (4.16) and
the notation set around it, we denote the components of the second
fundamental form by

(6.22) p̃i(v) := 〈Si(v), v〉, 0 ≤ i ≤ m,

and we define

D = {z ∈ E+ ⊕ E− : |z| = 1, p̃i(z) = 0, i = 0, · · · ,m}.

Lemma 6.3. [7, Proposition 25, p. 51] D = (E+ ⊕ E−) ∩M+.

Proof. This follows when we set t = w0 = · · · = wm = 0 in (4.14). �

Notation as around (4.16) and the index range convention (6.7) pre-
vailing, similar to the discussions below (6.12), let us denote n0 by
x# ∈ M+. Three lines above (6.14) we gave the geometric meaning of
F µ
αp at x# vs. F µ

αa at x. An immediate consequence of the preceding
lemma is the following crucial observation.

Corollary 6.1. [7, Proposition 28, p. 53] We have that the zero locus
V of

pa :=
∑
αµ

F µ
αaxαyµ, 1 ≤ a ≤ m,

and the zero locus of

pa :=
∑
αµ

F µ
αp xαyµ, m ≤ p ≤ 2m,

are identical in RPm−1 × RPm−1.

Proof. The eigenspaces of the shape operator Sx at x# with eigenvalue
±1 are identical, respectively, with the eigenspaces of Sn0 at x with
eigenvalues ±1. The preceding corollary then implies that

D = {z = (x, y) ∈ E+ ⊕ E− : |z| = 1,
∑
αµ

F µ
α ixαyµ = 0, 0 ≤ i ≤ m}.

Furthermore, observe that in (6.22)

p̃0 = |x|2 − |y|2 = 0

on D while |x|2 + |y|2 = 1 so that |x| = |y| = 1/2. The result follows
by projectivization. �
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Note that the same conclusion need not necessarily hold on CPm−1×
CPm−1 when we complexify the associated polynomials, since the com-
plexification of the real irreducible components need not exhaust all the
complex irreducible components. Nevertheless, the situation is clear in
the complex irreducible case, as follows.

Corollary 6.2. [7, p. 63] Notation as in the preceding corollary, if the
zero locus V C of pCa, 1 ≤ a ≤ m, is an irreducible variety in CPm−1 ×
CPm−1 and, moreover, the complex dimension of V C equals the real
dimension of V , then F µ

αa = F µ
αa+m in (6.17) after an orthogonal basis

change.

Proof. Since the zero locus V C of pCa , 1 ≤ a ≤ m, is irreducible, its ideal
I := (pC1 , · · · , pCm) is prime. On the other hand, the preceding corollary
says that p1, · · · , pm vanish on V having the same real dimension as
the complex dimension of V C, we conclude that pC1 , · · · , pCm also vanish
on V C so that by Hilbert’s Nullstellensatz,

pCa =
m∑
b=1

rab p
C
b , 1 ≤ a ≤ m,

for some polynomials rab. We deduce that

pa =
m∑
b=1

cab pb, 1 ≤ a ≤ m,

for some constants cab, since pa and pa are all of bidegree (1, 1). In
other words,

F µ
αa+m =

m∑
b=1

cab F
µ
α b, 1 ≤ a ≤ m,

whence (6.14) gives that
(
cab
)

is indeed an orthogonal matrix. The
conclusion follows by a suitable orthogonal basis change. �

Let us now return to the classification of Ozeki and Takeuchi in
the case m = 2. By Lemma 6.1, Lemma 6.2, (6.17), (6.21), Propo-
sition 6.5, Corollary 6.1, and Corollary 6.2, we can conclude that the
isoparametric hypersurface of multiplicity pair (m = 2,m−), m− ≥ 4,
is one constructed by Ferus, Karcher, and Münzner, and hence is ho-
mogeneous, so long as we can verify that the zero locus of pC1 and pC2 is
irreducible. This is indeed the case. It relies on the criterion of Serre
for irreducible varieties.

Theorem 6.1. [14, Theorem 1, p. 85; Theorem 2, p. 89] Let Ik :=
(f1, · · · , fk) be the ideal generated by a regular sequence

f1, · · · , fk, k ≤ l,
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in the complex polynomial ring P [l] in l variables z1, · · · , zl, whose zero
locus is Vk. Let Jk be the subvariety of Vk consisting of all points of Vk
where the Jacobian matrix

(6.23) ∂(f1, · · · , fk)/∂(z1, · · · , zl)
is not of full rank k. Suppose the codimension of Jk is ≥ 1 in Vk. Then
Vk is reduced, i.e., Ik is a radical ideal.

Moreover, if Vk is connected and the codimension of Jk is ≥ 2 in
Vk, then Vk is irreducible, i.e., Ik is a prime ideal. In particular, the
connectedness condition is automatically satisfied when f1, · · · , fk are
homogeneous polynomials.

Notation as above, we know the homogeneous pC1 and pC2 form a
regular sequence by Lemma 6.1 and the discussion above Definition 6.2.
It thus suffices to check that the codimension 2 estimate holds true in
Theorem 6.1, where k = 2 and l = 2m−, for the classification of Ozeki
and Takeuchi to go through. An elementary linear algebra argument
establishes the following.

Lemma 6.4. [7, Lemma 49, p. 64] We set m := m+ as usual. No-
tation is as in (4.16). There is an orthonormal basis in E1 and an
orthonormal basis in E−1 such that relative to these bases we have,
in (4.16),

(1): B1 = C1 =

(
0 0
0 σ

)
with σ = diag(σ1, · · · , σr), σs > 0,∀s,

(2): A1 =

(
I 0
0 ∆

)
, where ∆ is an r × r matrix in block form

∆ =


∆1 0 0 0 . . .
0 ∆2 0 0 . . .
0 0 ∆3 0 . . .
...

...
...

...
...


with ∆1 = 0 and ∆i, i ≥ 2, nonzero skew-symmetric matrices
in block form

∆i =


0 fi 0 0 . . .
−fi 0 0 0 . . .
0 0 0 fi . . .
0 0 −fi 0 . . .
...

...
...

...
...

 , and,

(3): ∆2
i = −(1− 2σ2

i ) Id.

Clearly, the lemma holds for any fixed a ≥ 1 in the expression of Sa.
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Corollary 6.3. dim(Ker(Aa)) = dim(∆1) ≤ r = rank(Ba) ≤ m for
all a ≥ 1.

With m = 2, we first estimate the dimension of the subvariety Z2

of Cm− × Cm− at each point of which the Jacobian matrix (6.23) of
pC1 , p

C
2 is of rank < 2. At (x, y) ∈ Z2, the differentials dpC1 , dp

C
2 are

linearly dependent, i.e., there are c1, c2 ∈ C, depending on (x, y), such
that

0 =
2∑

a=1

cadp
C
a =

∑
α

(
∑
a,µ

caF
µ
αayµ)dxα +

∑
µ

(
∑
a,α

caF
µ
αaxα)dyµ,

which requires that the coefficients of dxα be zero and the coefficients
of dyµ be zero. Thus

Z2 = {(x, y) ∈ Cm− ×Cm− : ∃(c1, c2),
∑
a

caA
tr
a x =

∑
a

caAay = 0}.

Accordingly, for a fixed (c1, c2) let us define

Z(c1,c2) := {(x, y) ∈ Cm− × Cm− :
∑

caA
tr
a x =

∑
a

caAay = 0}.

Consider the incidence space Y2 in CP 1 ×Cm− ×Cm− given by

{([c1 : c2], x, y) : (x, y) ∈ Z(c1,c2)}.
The standard projection of Y2 to Cm− ×Cm− maps Y2 onto Z2. Let

π : Y2 −→ CP 1

be the standard projection of Y2 to CP 1. Then with respect to π we
have

(6.24) dim(Z2) ≤ dim(Y2) ≤ dim(base) + dim(fiber),

where dim(fiber) is the maximal dimension of all fibers. It is easier to
estimate the dimension of the fibers π−1{[c1 : c2]} = Z(c1,c2). In fact, it
comes down to estimating the dimension of

T(c1,c2) := {y ∈ Cm− :
∑
a

caAay = 0}

for a fixed (c1, c2), because this estimate will also be a valid upper
bound for the dimension of {x ∈ Cm− :

∑
a caA

tr
a x = 0}, thus giving us

the estimate
dim(Z(c1,c2)) ≤ 2 dim(T(c1,c2)).

Case (1). c1, c2 are either all real or all purely imaginary. This is the
easier case. It is essentially Corollary 6.3. We have

dim(T(c1,cn)) ≤ r ≤ m
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and
dim(Z(c1,c2)) ≤ 2 dimT(c1,c2) ≤ 2m

Case (2). c1, c2 are not all real and not all purely imaginary. Write

ck = αk +
√
−1βk.

We may assume without loss of generality that

c1Se1 + c2Se2 = (α1 +
√
−1β1)Se1 +

√
−1β2Se2 .

By restricting to the A-block in S again we see that

β2A2y =
√
−1(α1 +

√
−1β1)A1y;

we may assume both coefficients are nonzero, or else we would be back
to Case (1). Hence we are now handling

(6.25) (A2 − zA1)y = 0

for some nonzero z ∈ C. By Lemma 6.4, we may assume

A1 =

(
I 0
0 ∆

)
.

Write

A2 =

(
Θ Λ
Ω Γ

)
of the same block sizes as A1. Inspecting the identity

A1A
tr
2 + A2A

tr
1 +B1B

tr
2 +B2B

tr
1 = 0,

extracted out of (4.15) we obtain

(6.26) Θ + Θtr = 0.

With this and r ≤ m = 2, one can eventually come up with the esti-
mate [7, p. 71]

dim(T(c1,c2)) ≤ (m− + r)/2 ≤ (m− +m− 1)/2,

whose details are not our concern here. Note that the upper bound
(m2 +m1− 1)/2, instead of the weaker (m2 +m1)/2, holds because we
know m2 + m1 is an odd number if 2 ≤ m < m− by Münzner [46, II]
(or, by the more general Abresch [1] mentioned in Subsection 5.1), and
as a result

(6.27) dim(Z(c1,c2)) ≤ 2 dim(T(c1,c2)) ≤ m− +m− 1 = m− + 1.

On the other hand, the base of π consists of finitely many points since
generic [c1 : c2] would make Z(c1, c2) null. Putting these together, (6.24)
yields

(6.28) dim(Z2) ≤ m− + 1.
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To achieve an estimate for dim(J2), where J2 and V2 are defined in (6.23)
with m = 2, by a well known fact [54, Corollary 5, p. 57], the zero
locus V2 of pC1 and pC2 has the property

dim(V2) ≥ 2m− − 2,

so that by the fact that J2 ⊂ Z2 we achieve the a priori estimate

dim(J2) ≤ dim(V2)− 2

if m− ≥ 5, in which case the ideal (pC1 , p
C
2 ) is prime as a result of

Serre’s criterion. The isoparametric hypersurface with the multiplicity
pair (2,m−), m− ≥ 5, is thus homogeneous. Although this suffices for
the conclusion in the case of m = 2 and m− ≥ 4 as m− are all odd [50,
II, p. 49], we can perform a general cutting procedure to reach the
conclusion for m− ≥ 4. Indeed, consider the surjective map

f : Cm− × Cm− −→ C2, (x, y) 7−→ (pC1 (x, y), pC2 (x, y)).

Z2 is the set where df is of rank < 2 and J2 = f−1(0) ∩ Z2.
Let Wk, 0 ≤ k ≤ 1, be the subvarieties of Z2 where df is of rank
≤ 1 − k. We have W0 ⊃ W1. Let Xj := Wj \ Wj+1. Then Z2 is
stratified into X0, X1 with Xj Zariski open in Wj, where df is of rank
1 − j on Xj. Around each (x, y) in X0, we may assume ∇(pC2 ) is a
multiple of ∇(pC1 ) considered as column vectors. Since(

pC1 pC2
)

=
(
x y

) (
∇(pC1 ) ∇(pC2 )

)
,

we see that near generic (x, y) in X0, the image of f is of dimension 1.
Therefore, a generic line cut through the origin performed in the target
space of f cuts down the dimension by 1 from Z2 in the dimension
estimate of J2 = f−1(0) so that dim(J2) ≤ dim(Z2)−1 ≤ m− by (6.28)
and thus dim(J2) ≤ dim(V2) − 2 when m− ≥ 4, whence follows the
classification of Ozeki and Takeuchi when m = 2 and m− ≥ 4..

In general, an inductive procedure [7, pp. 60-61] takes care of all m:

Proposition 6.6. [7, Proposition 46, p. 61] Notation as in Theo-
rem 6.1 above, set m = m+ as usual and assume m− ≥ m + 2. For
n ≤ m, let

Zn = {(x, y) ∈ Cm−×Cm− : ∃(c1, · · · , cn),
n∑
a=1

caA
tr
a x =

n∑
a=1

caAay = 0},

and

fn : (x, y) ∈ Cm− ×Cm− −→ Rn, (x, y) 7−→ (p1(x, y), · · · , pn(x, y))

with Jn = f−1(0) ∩ Zn. If m− ≥ 2m, then

(6.29) dim(Jn) ≤ dim(Vn)− 2



46 QUO-SHIN CHI

for all n ≤ m. If m = 2m − 1, then dim(Jn) ≤ dim(Vn) − 2 for all
n ≤ m− 1 while dim(Jm) ≤ dim(Vm)− 1.

As a consequence of the preceding proposition, an argument similar
to the one outlined above for the case m = 2 results in the classification
theorem:

Theorem 6.2. [7, Theorem 47, p. 61] If m− ≥ 2m+ − 1, then an
isoparametric hypersurface with four principal curvatures is one con-
structed by Ferus, Karcher, and Münzner, where the Clifford action
operates on M+.

Note that when m− = 2m − 1 in Proposition 6.6, the ideal Im =
(pC1 , · · · , pCm) is only radical by Theorem 6.1, so that a priori the argu-
ments in Corollary 6.2 do not appear to work. However, as in (6.21),
the real variety Vm cut out by p1, · · · , pm is of real dimension 2m−−m.
Let W be an irreducible component of V C

m containing an irreducible
component of Vm of real dimension 2m− −m; the complex dimension
of W is 2m− −m. Then Nullstellensatz holds locally, around generic
point z := (x, y) of W , for the ideal Im so that, in the notation of
Corollary 6.2,

(6.30) F µ
αa+m xαyµ =

m∑
b=1

cab F
µ
α b xαyµ, summed on α, µ,

for 1 ≤ a ≤ m and some rational functions cab(x, y) smooth around z.
Since the projection sending W ⊂ Rm−×Rm− to x ∈ Rm− is surjective
around z by the local structure of W given in Proposition 6.5, we see

(6.31) F µ
αa+m xαyµ =

m∑
b=1

cab(x)F µ
α b xαyµ

by Taylor-expanding along Rm− around x, where cab(x) is the collection
in the analytic cab(x, y) of the terms depending only on x, and so partial
differentiating with respect to yµ gives

F µ
αa+m xα =

m∑
b=1

cab(x)F µ
α b xα, summed on α.

Taking second order partial derivatives with respect to x, denoted by
c′′ab, we obtain

c′′abF
µ
α bxα = 0

for all µ, which implies c′′ab = 0 by the surjectivity of the map

(6.32) Sxm : y 7−→ (p1(x, y), · · · , pm(x, y)), pa =
∑
αµ

F µ
αa xαyµ,
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as detailed in Proposition 6.5. Hence, cab(x) are of degree at most 1
in x and hence must be a constant by comparing types in (6.31). We
arrive at the same conclusion as in the case when Im is a prime ideal.
In particular, this takes care of the case (m,m−) = (2, 3) in Ozeki and
Takeuchi’s classification since their explicit formula [50, II, p. 49] for
p1 and p2 results in that V C

2 is reduced when m− = 3 [7, Remark 53,
p. 73].

As good as it gets, Theorem 6.2 exactly reaches the borderline to
account for all multiplicity pairs except for the four exceptional cases
(m = m+,m−) = (3, 4), (4, 5), (6, 9), and (7, 8), by a look at Stolz’s
multiplicity result Theorem 5.3.

I spent the two years 2008-2009 on and off thinking about an effective
method to break the barrier to forge beyond. The first thing that came
in mind was that we had not utilized the second fundamental form
of M+ to full generality, where the E0-component had been entirely
ignored when, inspired by Ozeki and Takeuchi, studying the restricted
form pa =

∑
αµ F

µ
αaxαyµ defined only on E1⊕E−1. Moreover, a glance

at (4.16) showed that every component p̃a, 0 ≤ a ≤ m, of the second
fundamental form of M+ is irreducible since they are equivalent to

p̃0 = |x|2 − |y|2

after a coordinate change, so long as m− ≥ 2, obtained almost for
free. It seemed reasonable to replace p1, · · · , pm by p̃0, · · · , p̃m and find
criteria to warrant that p̃0, · · · , p̃m form a regular sequence by working
through the successive codimension 2 estimates in (6.29). The idea
paid off.

6.2. 2010-2019. From now on we stick to the convention that m :=
m+ ≤ m−. For ease of notation, we denote the components of the
second fundamental form of M+ by p0, · · · , pm without the tilde, and,
moreover, we drop the superscript C in pC of a real polynomial p when-
ever we indicate that p lives in P [l], the polynomial ring in l complex
variables, where l := 2m− +m is the dimension of M+.

The case of multiplicity pair (3,4)

In the expansion formula (4.14), the components of the second and
third fundamental forms of M+ are intertwined in ten convoluted equa-
tions. The first three say that the shape operator Sn satisfies (Sn)3 =
Sn for any normal direction n, which is agreeable with the fact that
the eigenvalues of Sn are 0, 1,−1 with fixed multiplicities. Following
the notation of Ozeki and Takeuchi [50, I], set

< pa, qb >:= 〈∇pa,∇qb〉, 0 ≤ a, b ≤ m.
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The fourth and fifth combined and the sixth are

(6.33) < pa, qb > + < pb, qa >= 0,

(6.34) << pa, pb >, qc > + << pc, pa >, qb > + << pb, pc >, qa >= 0,

for distinct a, b, c. The seventh is

(6.35) p0q0 + · · ·+ pmqm = 0.

Set G :=
∑m

a=0(pa)
2. The last three are

(6.36) 16
m∑
a=0

(qa)
2 = 16G |y|2− < G,G >,

(6.37)

8 < qa, qa >= 8(< pa, pa > |y|2 − (pa)
2)+ << pa, pa >,G >

− 24G− 2
m∑
b=0

< pa, pb >
2,

(6.38)

8 < qa, qb >= 8(< pa, pb > |y|2 − pa pb)+ << pa, pb >,G >

− 2
m∑
c=0

< pa, pc >< pb, pc >, a, b distinct.

(6.35) caught my eye while others seemed dauntingly entangling; it is
the well known syzygy equation in commutative algebra. A property
the syzygy equation enjoys is that when p0, · · · , pm form a regular
sequence in P [l], l = 2m− +m, we have

(6.39) qa =
∑
b

rab pb, rab = −rba

for some first degree polynomials rab [14, Proposition 4]. This is ex-
actly Condition B of Ozeki and Takeuchi. With this observation, I
worked out in [11] the a priori codimension 2 estimate in P [l] for the
components p0, · · · , pm of the second fundamental form of M+. Indeed,
following the convention in (6.7), let us write

(6.40)

rab =
∑
α

Tαab uα +
∑
µ

T µab vµ +
∑
p

T pab zp,

p0 =
∑
α

(uα)2 −
∑
µ

(vµ)2,

pa = 4
∑
αµ

F µ
αa uαvµ − 2

∑
αp

Fα
p a uαzp + 2

∑
µp

F µ
p a vµzp.
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Note that y in (6.36) through (6.38) denotes a tangential vector whose
components are uα, vµ, and zp. Substituting (6.40) into (6.39) and
comparing polynomial types yields that the coefficient of (uα)3, denoted
qαααa , in the polynomial expression of qa is

qαααa = Tαa 0,

while the right hand side of (6.36) ensures that there are no (uα)6-
terms. We conclude

(6.41) Tαa 0 = 0 = −Tα0 a; likewise, T µa 0 = −T µ0 a = 0.

In other words,

r0a consists of only zp-terms in the expansion of q0.

Meanwhile, it is known that q0 is homogeneous of degree 1 in uα, vµ
and zp by [50, I, p. 537]. We expand the right hand side of (6.39) to
ascertain that the coefficient of the uαvµzp-term of q0, denoted qαµp0 , is

(6.42) qαµp0 = 4
∑
b≥1

T p0 b F
µ
α b.

Here comes something particularly nice. It turns out that q0 at x
encodes information of the second fundamental form at x# := n0 ∈M+.
More precisely, it is shown in [11] that

qαµp0 = 4F µ
αp.

(See also [14, p. 97] for a different proof using the expansion for-
mula (4.14).) It follows that

F µ
αp =

∑
b

fpb F
µ
α b, fpb := T p0 b.

We need only verify that
(
fpb
)

is an orthogonal matrix for the first
equation in (6.11) to hold. It is remarkable that this is indeed true
as a consequence of a piece of commutative algebra [39, p. 153] (see
also [14, p. 91]):

Proposition 6.7. Let p1, · · · , pk be a regular sequence in P [l]. Let
F (t1, · · · , tk) be a homogeneous polynomial of degree d in k variables
with coefficients in P [l]. Suppose F (p1, · · · , pk) = 0. Then all the
coefficients of F belong to I = (p1, · · · , pk).

The key idea of showing the orthogonality of (fpb ) is to rewrite (6.37)
as a polynomial homogeneous in all papb whose coefficients are homo-
geneous polynomials of degree 2, so that these coefficients are linear
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combinations of all pa by the preceding proposition. Specifically, the
coefficient of (p0)2 is

16

m1∑
a=1

(r0a)
2 − 16(

∑
α

(uα)2 +
∑
µ

(vµ)2 +
∑
p

(zp)
2) + 4 < p0, p0 >,

which is a linear combination of p0, p1, · · · , pm. Knowing that r0a are
functions of zp alone by (6.41), we invoke (6.40) and compare variable
types to conclude

(6.43)
m∑
a=1

(r0a)
2 =

2m∑
p=m+1

(zp)
2,

which thus asserts the orthogonality of the matrix
(
fpb
)
. We may now

assume

(6.44) T a+m
0 b = fa+m

b = δab , so that F µ
αa+m = F µ

αa,

and as a result of (6.41) and (6.44) derive

r0b =
∑
a

δab za+m = zb+m.

With the Einstein summation convention, we calculate

q0 = r0b pb

= 2(δab za+m)(Sbαµ xαyµ + Sbα c+m xαzc+m + Sbµ c+m yµzc+m).

Hence, we obtain ∑
abcα

(δab za+m) (Sbα c+muαzc+m) = 0,

or equivalently, ∑
ac

Saα c+m zc+mza+m = 0.

In other words, we have

(6.45) Fα
c+ma = −Fα

a+mc.

Similarly,

(6.46) F µ
c+ma = −F µ

a+mc.

In particular, (6.11) are valid now. What is satisfying is that m =
m+ < m− is the only condition to warrant that (6.15) is true, so
that Proposition 6.3 gives that the isoparametric hypersurface is one
constructed by Ferus, Karcher, and Münzner, as follows.
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Proposition 6.8. [11, Proposition 4] Assume m = m+ < m−. Sup-
pose Condition B of Ozeki and Takeuchi holds, which is the case when
the components of the second fundamental form p0, p1, · · · , pm of M+

form a regular sequence in P [l], l = 2m−+m. Then the isoparametric
hypersurface is of the type constructed by Ferus, Karcher, and Münzner
with the Clifford action operating on M+.

The proof uses another easier spanning property [7, Proposition 7,
p. 18], which states that if m < m− then (F µ

α 1, · · · , F µ
αm), ∀α, µ, span

Rm, to verify that (6.11) implies (6.15) if m < m−, by utilizing certain
identities in [7, Proposition 19].

The preceding proposition is pivotal for the classification of the re-
maining cases, to be discussed later.

In view of the preceding proposition, we need only find conditions
to guarantee that p0, · · · , pm form a regular sequence in P [l], which is
where Serre’s criterion Theorem 6.1 of codimension 2 estimate comes in
again. We record the inductive scheme to generate a regular sequence.

Lemma 6.5. [7, Proposition 39] Let p0, · · · , pm ∈ P [l] be linearly
independent homogeneous polynomials of equal degree ≥ 1. For each
0 ≤ k ≤ m− 1, let Vk be the variety defined by p0 = · · · = pk = 0, and
let Jk be the subvariety of Vk, where the Jacobian

∂(p0, · · · , pk)/∂(z1, · · · , zl)
is not of full rank k + 1. If the codimension of Jk in Vk is ≥ 2 for all
0 ≤ k ≤ m− 1, then p0, · · · , pm form a regular sequence.

Let us parametrize C2m−+m by points (u, v, w), where u, v ∈ Cm−

and w ∈ Cm. For k ≤ m, let

Vk := {(u, v, w) ∈ C2m−+m : p0(u, v, w) = · · · = pk(u, v, w) = 0}
be the variety carved out by p0, · · · , pk in P [l]. We first estimate the
dimension of the subvariety Xk of C2m−+m defined by

Xk := {(u, v, w) ∈ C2m−+m : rank of Jacobian of p0, · · · , pk < k + 1}.
This amounts to saying that there are constants c0, · · · , ck such that

(6.47) c0dp0 + · · ·+ ckdpk = 0.

Since pa = 〈Sa(x), x〉, we see dpa = 2〈Sa(x), dx〉 for x = (u, v, w)tr;
therefore, by (6.47),

Xk = {(u, v, w) : (c0S0 + · · ·+ ckSk) · (u, v, w)tr = 0}.
for [c0 : · · · : ck] ∈ CP k, where 〈Sa(X), Y 〉 = 〈S(X, Y ), na〉 is the shape
operator of the focal manifold M+ in the normal direction na. Since
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Jk = Xk ∩ Vk, by Lemma 6.5 we wish to establish

dim(Xk ∩ Vk) ≤ dim(Vk)− 2

for k ≤ m− 1 to verify that p0, p1, · · · , pm form a regular sequence.
Note that for a fixed λ = [c0 : · · · : ck] ∈ CP k, if we set

Sλ := {(u, v, w) : (c0S0 + · · ·+ ckSk) · (u, v, w)tr = 0},

then we have

(6.48) Xk = ∪λ∈CPkSλ.

Thus, it boils down to estimating the dimension of Sλ.
We break it into two cases. If c0, · · · , ck are either all real or all

purely imaginary, then

dim(Sλ) = m,

since c0Sn0 + · · ·+ckSnk = cSn for some unit normal vector n and some
nonzero real or purely imaginary constant c, and we know that the null
space of Sn is of dimension m for all normal n.

On the other hand, if c0, · · · , ck are not all real and not all purely
imaginary, then after a normal basis change, we may assume that

(6.49) Sλ = {(u, v, w) : (S1∗ − ιλ S0∗) · (u, v, w)tr = 0}

for some complex number ιλ relative to a new orthonormal normal basis
n∗0, n

∗
1, · · · , n∗k in the linear span of n0, n1, · · · , nk by the Gram-Schmidt

process. In matrix terms, the equation in (6.49) assumes the form

(6.50)

 0 A B
Atr 0 C
Btr Ctr 0

xy
z

 = ιλ

I 0 0
0 −I 0
0 0 0

xy
z

 ,

where x, y, and z are (complex) eigenvectors of S0∗ with eigenvalues
1,−1, and 0, respectively.

The decomposition Lemma 6.4 ensures that we can normalize the
matrix on the left hand side of (6.50) to decompose x, y, z into x =
(x1, x2), y = (y1, y2), z = (z1, z2) with x2, y2, z2 ∈ Crλ , where rλ is the
rank of B, or intrinsically,

m− rλ is the dimension of the intersection of the kernels of S0∗ and
S1∗.

With respect to this decomposition either x1 = y1 = 0, or both are
nonzero with

(6.51) ιλ = ±
√
−1.
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In both cases we have x2 = −y2 and can be solved in z2 so that z may
be chosen to be a free variable. Hence, either x1 = y1 = 0, in which
case

dim(Sλ) = m,

or both x1 and y1 are nonzero, in which case y1 = ±
√
−1x1 and so

(6.52) dim(Sλ) = m+m− − rλ,
where x1 contributes the dimension count m− − rλ while z does m.
Now, by (6.48) we see

(6.53) Jk = Xk ∩ Vk = ∪λ∈CPk(Sλ ∩ Vk),
where Vk is also defined by p0∗ = · · · = pk∗ = 0. Let us cut Sλ by

0 = p0∗ =
∑
α

(xα)2 −
∑
µ

(yµ)2

to achieve an a priori estimate of dim(Jk).

Case 1: x1 and y1 are both nonzero. This is the case of nongeneric
λ ∈ CP k. We substitute y1 = ±

√
−1x1 and x2 and y2 in terms of z2

into p0∗ = 0 to deduce that

0 = p0∗ = (x1)2 + · · ·+ (xm−−rλ)2 + z terms;

hence, p0∗ = 0 cuts Sλ to reduce the dimension by 1. In other words,
now by (6.52),

(6.54) dim(Vk ∩Sλ) ≤ (m+m− − rλ)− 1 ≤ m+m− − 1.

Meanwhile, only a subvariety of λ of dimension k − 1 in CP k assumes
ιλ = ±

√
−1; in fact, this subvariety is the smooth hyperquadric

(6.55) Qk−1 := {λ = [c0 : · · · : ck] : c2
0 + · · ·+ c2

k = 0}

in CP k. This is because if we write (c0, · · · , ck) = α +
√
−1β where α

and β are real vectors, then ιλ = ±
√
−1 is equivalent to the conditions

that 〈α, β〉 = 0 and |α|2 = |β|2. In other words, the nongeneric λ ∈
CP k constitute the smooth hyperquadric. Therefore, by (6.53), an
irreducible component W of Jk over nongeneric λ will satisfy

(6.56) dim(W) ≤ dim(Vk ∩Sλ) + k − 1 ≤ m+m− + k − 2.

(Total dimension ≤ base dimension + fiber dimension.)

Case 2: x1 = y1 = 0. This is the case of generic λ, where dim(Sλ) = m,
so that an irreducible component V of Jk over generic λ will satisfy

dim(V) ≤ m+ k ≤ m+m− + k − 2,
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as we may assume m− ≥ 2, noting that the case m = m− = 1 follows
from Takagi’s classification for m = 1 as mentioned above.

Putting these two cases together, we conclude that

(6.57) dim(Jk) = dim(Xk ∩ Vk) ≤ m+m− + k − 2.

On the other hand, since Vk is cut out by k + 1 equations p0 = · · · =
pk = 0, we have

(6.58) dim(Vk) ≥ m+ 2m− − k − 1.

Therefore,

(6.59) dim(Jk) ≤ dim(Vk)− 2

when k ≤ m− 1, taking m− ≥ 2m− 1 into account.
In summary, with the assumption m− ≥ 2m − 1, we have estab-

lished (6.59) for k ≤ m − 1, so that the ideal (p0, p1, · · · , pk) is prime
when k ≤ m − 1 by Serre’s criterion Theorem 6.1. Lemma 6.5 then
implies that p0, p1, · · · , pm form a regular sequence. It follows by Propo-
sition 6.8 that the isoparametric hypersurface is of the type constructed
by Ferus, Karcher, and Münzner.

This approach, done in [11], gives a considerably simpler proof of
Theorem 6.2 above.

The extra bonus to this approach is that in [11] I could also classify
the exceptional case when the multiplicity pair is (3, 4), in which case
it was known that there had been two existing examples, one is the
inhomogeneous one of Ozeki and Takeuchi, where the Clifford action
operates on M+, and the other is the homogeneous one, where the
Clifford action operates on M−. I also knew that for the homogeneous
example p0, p1, p2, p3 of M+ did not form a regular sequence anymore;
otherwise, Proposition 6.8 would give that the hypersurface was the
one of Ozeki and Takeuchi.

It turned out that Condition A returned in an unexpected way to
settle the case of multiplicity pair (3, 4). Note that the quantity rλ is
entirely discarded in (6.54). Condition A enables us to come up with
a finer estimate on the right hand side of (6.54) by utilizing rλ.

Indeed, if we stratify the hyperquadric Qk−1, k ≤ m − 1, given
in (6.55), of nongeneric λ for which the dimension estimate may create
complications, into subvarieties

Lj, of some dimension dj ≤ k − 1, over which rλ = j,

then by (6.54) an irreducible component Θj of Vk ∩ (∪λ∈LjSλ) will
satisfy

(6.60) dim(Θj) ≤ dim(Vk ∩Sλ) + dj ≤ m+m− + dj − 1− j.
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We run through the same arguments as those following (6.54) to deduce
that the codimension 2 estimate (6.59) holds true over Lj when

(6.61) m− ≥ 2k + 1− j − cj, where

cj := k − 1− dj = codimension of Lj in Qk−1.

Note that the inequality dim(V) ≤ m+k below (6.56) for generic λ in
CP k−1 automatically results in the codimension 2 estimate dim(V) ≤
dim(Vk) − 2, since m− > m in the remaining four exceptional cases.
Thus, it suffices to consider only those λ ∈ Qk−1 for k ≤ m − 1 from
now on.

Let us look at the case when (m,m−) = (3, 4), where now 0 ≤ k ≤
m − 1 = 2. First, observe that (6.61) is automatically satisfied when
j ≥ 1; the same is also true for all j when k = 1. So, we assume k = 2
and j = 0 henceforth.

With k = 2, j = 0, let λ0 ∈ L0 be generically chosen; we have
rλ0 = j = 0. Suppose that M+ is free of points of Condition A every-
where. Let us span λ0 by the orthonormal n∗0 and n∗1 completed to an
orthonormal basis n∗0, n

∗
1, n

∗
2, n

∗
3. Since rλ0 = 0, the matrices B = C = 0

and A = I in (6.50) for S1∗ . For notational clarity, let us denote the as-
sociated B and C blocks of the shape operator matrices Sa∗ by Ba∗ and
Ca∗ for the normal basis elements n∗1, · · · , n∗3. It follows that p0∗ = 0
and p1∗ = 0 cut Sλ0 in the variety

{(x,±
√
−1x, z) :

∑
α

(xα)2 = 0}.

We may assume (B2∗ , C2∗) is nonzero as M+ has no points of Condition
A. Since z is a free variable, p2∗ = 0 will have nontrivial xz-terms

0 = p2∗ =
∑
αp

Sαpxαzp +
∑
µp

Tµpyµzp + xαyµ terms

=
∑
αp

(Sαp ±
√
−1Tαp)xαzp + xαyµ terms,

taking y = ±
√
−1x into account, where Sαp := 〈S(X∗α, Z

∗
p), n∗2〉 and

Tµp := 〈S(Y ∗µ , Z
∗
p), n∗2〉 are (real) entries of B2∗ and C2∗ , respectively,

and X∗α, Y ∗µ , and Z∗p are orthonormal eigenvectors for the eigenspaces
of S0∗ with eigenvalues 1,−1, and 0, respectively; hence, the dimen-
sion of Sλ0 will be cut down by 2 by p0∗ , p1∗ , p2∗ = 0. In conclusion,
modifying (6.54) we have

dim(Vk ∩Sλ) ≤ m+m− − 2,

for all λ ∈ L0. As a consequence, the right hand side of (6.61), which is
no bigger than 5 for j = 0, is now no bigger than 4 with the additional



56 QUO-SHIN CHI

cut p2∗ = 0 so that the codimension 2 estimate goes through for L0 as
well. It follows by Proposition 6.8 that the isoparametric hypersurface
is in fact the one of Ozeki and Takeuchi, which thus has points of
Condition A. This is a piece of absurdity to the assumption that M+

has no points of Condition A. Therefore, M+ does admit points of
Condition A. The result of Dorfmeister and Neher [21] (see also [12])
implies that the isoparametric hypersurface is then necessarily of the
type of Ferus, Karcher, and Münzner. In particular, it is either the
inhomogeneous one by Ozeki and Takeuchi, or the homogeneous one.

The classification in the case of multiplicity pair (3, 4) is now achieved,
as was done in [11].

The case of multiplicity pairs (4, 5) and (6, 9)

The role that Condition A plays in the classification in the case
of multiplicity pair (3, 4) is that, assuming nonexistence of points of
Condition A on M+ makes the codimension 2 estimate go through.
On the other hand, nonexistence of points of Condition A on M+ in
the case of multiplicity pairs (4, 5) and (6, 9) always holds true by the
discussions following (4.18). Guided by the (3, 4) case, I suspected that
nonexistence of points of Condition A on M+ could lead to something
fruitful in the case of multiplicity pairs (4, 5) and (6, 9). It surely did.

The homogeneous example of multiplicity pair (4, 5) is a principal
orbit of the action U(5) on so(5,C) given by

g · Z = gZg,

while the homogeneous example of multiplicity pair (6, 9), being the fo-
cal manifold M− of an isoparametric hypersurface of the type of Ferus,
Karcher, and Münzner on which the Clifford action operates, can be
realized as the Clifford-Stiefel manifold

M− = {(ζ, η) ∈ S31 ⊂ R16 × R16 :

|ζ| = |η| = 1/
√

2, ζ ⊥ η, J̌i(ζ) ⊥ η, i = 1, · · · , 8},

where J̌1, · · · , J̌8 are the unique (up to equivalence) irreducible rep-
resentation of the (anti-symmetric) Clifford algebra C8 on R16 con-
structed by the octonion algebras as follows. Let e1, e2, · · · , e8 be the
standard basis of the octonion algebra O with e1 the multiplicative
unit. Let J1, J2, · · · , J7 be the matrix representations of the octonion
multiplications by e2, e2, · · · , e8 on the right over O. Then

(6.62) J̌i =

(
Ji 0
0 −Ji

)
, 1 ≤ i ≤ 7, J̌8 =

(
0 I
−I 0

)
.
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In [13, Sections 2.3-2.4], I calculated their second fundamental forms
at specifically chosen points of M+, which does not lose generality
because of homogeneity, and observed that in the expression (4.16) we
have that Ba = Ca are of rank 1 for 1 ≤ a ≤ 4 (respectively, 1 ≤ a ≤ 6)
in the (4, 5) (respectively, (6, 9)) case, satisfying the property that in
each Ba the only nonzero entry is in the last row at column a with value
1/
√

2. This peculiarity is not coincidental and is in fact a consequence
of codimension 2 estimates.

Lemma 6.6. Assume (m,m−) = (4, 5) or (6, 9). Then either the
isoparametric hypersurface is the inhomogeneous one of multiplicity
pair (6, 9) of Ferus, Karcher, and Münzner, or rλ = 1 for all λ in
Qm−1.

Proof. It is straightforward to see that when (m,m−) = (4, 5) (respec-
tively, (m,m−) = (6, 9)) and j ≥ 2, the codimension 2 estimate (6.61)
goes through for all k ≤ m − 1 = 3 (respectively, k ≤ m − 1 = 5);
likewise, the codimension 2 estimate goes through when k ≤ m − 2
for all j. Thus, we may assume k = m − 1 and j ≤ 1 without loss of
generality to consider λ ∈ Qk−1 = Qm−2 ⊂ Qm−1.

Suppose

(6.63) sup
λ∈Qm−1

rλ ≥ 2.

We may so arrange such that generic λ ∈ Qk−1 = Qm−2 assumes rλ ≥ 2.

Case 1. On L1 where rλ = 1, we have that the codimension 2 estimate
still goes through. This is because (6.60) is now replaced by

(6.64) dim(Θj) ≤ m1 +m2 + k − 3− j = m+m− + k − 4

with j = 1, due to the fact that such λ, being nongeneric in Qk−1 as
rλ ≥ 2 for generic λ, constitute a subvariety of Qk−1 of dimension at
most k − 2. It follows by (6.58) that

dim(Θj) ≤ dim(Vk)− 2, j = 1.

Case 2. On L0 where rλ = 0, (6.64) now reads

dim(Θj) ≤ m+m− + k − 3

with j = 0. We need to cut back one more dimension to make the
equality in (6.64) valid. Since rλ = 0, we see B∗1 = C∗1 = 0 and A∗ = I
in (6.50) for Sn∗1 , where λ is the 2-plane spanned by n∗0 and n∗1 completed
into the basis n∗0, n

∗
1, n

∗
2, · · · , n∗m. It follows that p∗0 = 0 and p∗1 = 0 cut
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Sλ in the variety

(6.65) {(x,±
√
−1x, z) :

∑
α

(xα)2 = 0}.

We may assume (B∗2 , C
∗
2) is nonzero because of nonexistence of points

of Condition A on M+. Since z is a free variable in (6.65), p∗2 = 0 will
have nontrivial xz-terms,

0 = p∗2 =
∑
αp

Sαpxαzp +
∑
µp

Tµpyµzp +
∑
αµ

Uαµxαyµ

=
∑
αp

(Sαp ±
√
−1Tαp)xαzp,

(6.66)

taking y = ±
√
−1x into account and remarking that as a result the

xαyµ terms are gone because Uαµ = −Uµα, where

Uαµ := 〈S(X∗α, X
∗
µ), n∗2〉, Sαp := 〈S(X∗α, Z

∗
p), n∗2〉, Tµp := 〈S(Y ∗µ , Z

∗
p), n∗2〉

are entries of A∗2, B∗2 and C∗2 , respectively, and X∗α, 1 ≤ α ≤ m2, Y ∗µ , 1 ≤
µ ≤ m2 and Z∗p , are orthonormal eigenvectors for the eigenspaces of
Sn∗0 with eigenvalues 1,−1, and 0, respectively, as usual. The skew-
symmetry of the matrix U comes from the identity

AjA
tr
1 + A1A

tr
j + 2(BjB

tr
1 +B1B

tr
j ) = 0, j 6= 1,

obtained by inserting (4.16) into (4.15), where (A1, B1) are as given in
Lemma 6.4 above.

Hence the dimension of Sλ will be cut down by 2 by p∗0, p
∗
1, p
∗
2 = 0,

so that again

(6.67) dim(Vk ∩Sλ) ≤ m+m− − 2.

In conclusion, we deduce

(6.68) dim(Θj) ≤ dim(Vk ∩Sλ) + k − 2 ≤ m+m− + k − 4,

so that the codimension 2 estimate (6.59) goes through. The codimen-
sion 2 estimate holds true verbatim for the case of multiplicity pair
(6, 9) with obvious dimension modifications.

Now, the validity of (6.59) implies that the isoparametric hypersur-
face is the inhomogeneous one of Ferus, Karcher, and Münzner due to
Proposition 6.8, provided (6.63) holds.

We therefore conclude that rλ ≤ 1 for all λ ∈ Qm−1 if the hypersur-
face is not the inhomogeneous one of Ferus, Karcher, and Münzner, in
which case we claim that generic rλ = 1. Suppose the contrary. Then
rλ = 0 for all λ in Qm−1. It would follow that Ba = 0 for all a ≥ 1,
which would imply that the isoparametric hypersurface is of Condition
A. This is impossible.
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Lastly, for a λ with rλ = 0 we have A in (6.50) is the identity matrix
by (4.13), so that its rank is full (=5 or 9). It follows that generic
λ in Qm−1 will have the same full rank property. However, for a λ
with rλ = 1, the structure of ∆ in Lemma 6.4 implies that ∆ = 0 so
that such A, which are also generic, will be of rank 4 or 8. This is a
contradiction. In other words, rλ = 1 for all λ ∈ Qm−1. �

Corollary 6.4. Suppose (m,m−) = (4, 5) or (6, 9). Then either the
isoparametric hypersurface is the inhomogeneous one of multiplicity
pair (6, 9) of Ferus, Karcher and Münzner, or rλ = 1 for all λ ∈ Qm−1.
In the latter case, the second fundamental form of M+ is identical with
that of M+ of the homogeneous isoparametric hypersurface of the re-
spective multiplicity pair.

Here goes the idea. Assume the hypersurface is not the inhomoge-
neous one of multiplicity pair (6, 9). rλ = 1 by the preceding proposi-
tion.

For a λ in Qm−1 spanned by n∗0 and n∗1, we extend them to a smooth
local orthonormal frame n∗0, n

∗
1, · · · , n∗m such that Sn∗0 is the square

matrix on the right hand side of (6.50) while Sn∗1 is the square one
on the left hand side, where A and B are the respective A1 and B1

in Lemma 6.4, for which the skew-symmetric 1-by-1 matrix ∆ = 0 in
item (2) and so by item(3) the 1-by-1 matrix σ = 1/

√
2.

Nonexistence of points of Condition A on M+ gives us a nonzero
matrix B∗2 associated with Sn∗2 . Modifying (6.65), p∗0 = 0 and p∗1 = 0
now cut Sλ in the variety

(6.69)

{(x1, · · · , x4,
t√
2ιλ

, ιλx1, · · · , ιλx4, −
t√
2ιλ

, z1, · · · , z3, t) :

4∑
j=1

(xj)
2 = 0}

where ιλ = ±
√
−1 as given in (6.51), and

x = (x1, x2, x3, x4, x5 = t/
√

2ιλ),

y = (y1, · · · , y5) = (ιλ x1, ιλ x2, ιλ x3, ιλ x4, −t/
√

2ιλ),

z = (z1, z2, z3, z4 = t).

Meanwhile, (6.66) becomes
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(6.70)
0 =

4,3∑
α=1,p=1

(Sαp ±
√
−1Tαp)xαzp

+ terms not involving x1, · · · , x4, z1, · · · , z3.

Since x1, · · · , x4, z1, · · · , z3 are independent variables, the nontriviality
of the displayed term on the right hand side of the preceding equation
implies that the dimension cut can be reduced by 1 so that we have,
by (6.67) and (6.68),

dim(Θj) ≤ m+m− + k − 4, j = 1,

for k ≤ 3, so that the codimension 2 estimate (6.59) goes through
in the neighborhood of λ, which is absurd as the hypersurface would
then be the inhomogeneous one of the multiplicity pair (6, 9) in view
of Proposition 6.8. We therefore conclude that (Bj, Cj), j ≥ 2, around
λ are of the form

(6.71) Bj =

(
0 dj
bj cj

)
, Cj =

(
0 gj
ej fj

)
, ∀j ≥ 2,

for some real numbers cj and fj with 0 of size 4 × 3 corresponding to
the displayed term of (6.70).

It turns out, as done in [13, Remark 3], that this suffices to conclude
that

dj = gj = cj = fj = 0, ∀j ≥ 2.

So now we have

A1 =

(
I 0
0 0

)
, Aj =

(
αj 0
0 0

)
, j = 2, 3, 4, Bj = Cj =

(
0 0
bj 0

)
,

all of the same block sizes, satisfying

αjαk + αkαj = −2δjkI, 〈bj, bk〉 = δjk/2,

by the identity

(6.72) AiA
tr
j + AjA

tr
i +BiB

tr
j +BjB

tr
i = 2δij Id.

As a consequence, first of all, we can perform an orthonormal basis
change on n∗2, n

∗
3, n

∗
4 so that the resulting new bj is 1/

√
2 at the jth

slot and is zero elsewhere. Meanwhile, we can perform an orthonormal
basis change of the E1 and E−1 spaces so that I and αj, 2 ≤ j ≤ 4, are
exactly the matrix representations of the right multiplication of 1, i, j, k
on H without affecting the row vectors bj, 2 ≤ j ≤ 4. This is precisely
the second fundamental form of the homogeneous example.

Now that the second fundamental form of M+ is identical with that
of the homogeneous example of the same multiplicity pair when the



THE ISOPARAMETRIC STORY, A HERITAGE OF ÉLIE CARTAN 61

isoparametric hypersurface is not the inhomogeneous one of Ferus,
Karcher and Münzner, one can explore the defining equations (6.33)
through (6.38) to determine definitively, as was done in [13], that the
third fundamental form is also nothing other than that of the homo-
geneous example, most succinctly expressed in the respective quater-
nionic and octonion framework. The hypersurface is thus the homoge-
neous one and whence follows the classification.

The case of multiplicity pair (7, 8). In retrospect, we explored two
avenues in the preceding three exceptional cases of multiplicity pairs
(3, 4), (4, 5), and (6, 9) to achieve the codimension 2 estimates. The
first route was via the right hand side of the a priori estimate (6.61),

m− ≥ 2k + 1− j − cj, ∀k ≤ m− 1,

where large rank j and nonzero codimension cj are employed to reduce
the situation to j = 0 or 1, to be followed by the second route to handle
the estimate in (6.67), where, by introducing more cuts via pa = 0,
a ≥ 2, we were able to cut down the upper bound of dim(Vk ∩ Sλ)
from the one in (6.54) to that in (6.67),

dim(Vk ∩Sλ) ≤ m+m− − 2,

so that the right hand side of (6.61) was down by 1 to achieve the
improved estimate

m− ≥ 2k − j − cj, ∀k ≤ m− 1.

The worst case scenario in this procedure is that pa = 0, for all
a ≥ 2, always contain Sλ so that no dimension cut can be achieved
of Vk ∩Sλ, which was avoided in the above three cases with the help
of nonexistence of points of Condition A and that the isoparametric
hypersurface is not the inhomogeneous one of Ozeki and Takeuchi or
of Ferus, Karcher, and Münzner.

To understand this worst case, I introduced in [15] the notion of
r-nullity:

Definition 6.3. We say a normal basis n0, n1, n2, · · · , nm is normal-
ized if S0, · · · , Sm are as in (4.16) with S1 normalized as in Lemma 6.4
for which B1 is of rank r.

Definition 6.4. Given a normalized normal basis n0, · · · , nm, let Cm− '
CE+, Cm− ' CE− and Cm+ ' CE0 be parametrized by x, y and z, re-
spectively, where E+, E− and E0 are the eigenspaces of S0 with eigen-
values 1,−1, and 0, respectively. Let x := (x1, x2), y := (y1, y2) and
z := (z1, z2) with x2, y2, z2 ∈ Cr. Let p0, · · · , pm be the components of
the second fundamental form at the base point of n0.
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We say a normal basis element nl, l ≥ 2, is r-null if pl is identically
zero when we restrict it to the linear constraints

(6.73) y1 = ι x1, y2 = −x2, z2 = σ−1(∆ + ι Id)x2, ι = ±
√
−1.

We say the normal basis is r-null if nl are r-null for all l ≥ 2.

Note that the conditions in (6.73) define Sλ given in (6.49) when rλ =
r.

The algebro-geometric definition has a differential-geometric charac-
terization.
Lemma 6.7. [15, Lemma 3.1] Let n0, · · · , nm be a normalized normal
basis. A normal basis element nl, l ≥ 2, is r-null if and only if the
upper left (m− − r)-by-(m+ − r) block of Bl and Cl of Sl are zero.

It is now clear by the preceding lemma that Condition A is equiv-
alent to that all normalized normal bases are 0-null at the relevant
point of M+. Moreover, what we showed in Corollary 6.4 for the cases
of multiplicity pairs (4, 5) or (6, 9) is that, all normalized normal bases
of M+ are 1-null if the isoparametric hypersurface is not the inhomoge-
neous one of Ferus, Karcher, and Münzner, from which we determined
below (6.71) that the second fundamental form of M+ coincides with
that of the homogeneous example with the respective multiplicity pair.

What is remarkable is that something similar holds true in the case of
multiplicity pair (7, 8) as well, only much more complicated this time.

Proposition 6.9. [15, Sections 3-6] Assume (m,m−) = (7, 8) and the
isoparametric hypersurface is not the inhomogeneous one constructed
by Ozeki and Takeuchi. Then away from points of Condition A, M+ is
generically 4-null, i.e., generically chosen normalized normal bases are
4-null. Moreover, we may assume Aa and Ba are of the form

(6.74) Aa =

(
za 0
0 wa

)
, Ba =

(
0 0
0 ca

)
, Ca =

(
0 0
0 fa

)
, 1 ≤ a ≤ 3,

(6.75)

Aa =

(
0 βa
γa δa

)
, Ba =

(
0 da
ba ca

)
, Ca =

(
0 ga
ba fa

)
, 4 ≤ a ≤ 7,

where Aa are of size 8× 8, Ba and Ca are of size 8× 7, and the lower
right blocks of all matrices are of size 4× 4.

The idea is that if we define

R := sup
λ∈Qm−1

rλ, m = 7,

then a generically chosen normalized normal basis is R-null [15, Corol-
lary 3.2]. Furthermore, if R ≥ 5, then the codimension 2 estimate goes



THE ISOPARAMETRIC STORY, A HERITAGE OF ÉLIE CARTAN 63

through away from points of Condition A [15, Sections 3-5], so that by
Proposition 6.8 the isoparametric hypersurface is the one of Ozeki and
Takeuchi. Thus, R ≤ 4 if it is not the one of Ozeki and Takeuchi, to
be assumed from now on. Then at a generically chosen n0 with base
point x0, the normal vector n#

0 := x0 at the “mirror point” x#
0 = n0

of x0 in M+ is also generic spanning the same λ ∈ Qm−1, m = 7, of
nullity R. We have the explicit dictionary to translate the data of the
shape operators at x and x#. Explicitly,

(6.76) Aa :=
(
Saαµ
)
, Ba :=

(
Saαp
)
, Ca :=

(
Saµp
)
, 1 ≤ a ≤ 7.

Let the counterpart matrices at x#
0 and their blocks be denoted by the

same notation with an additional #. Then,

(6.77) A#
p :=

(
Spαµ
)
, B#

p =
(
Saαp
)
, C#

p = −
(
Saµp
)
, 8 ≤ p ≤ 14,

following the index convention (6.7). As a consequence, we obtain
many zeros as indicated in (6.74) and (6.75), and in particular, we
obtain R = 4 by a resulting Clifford representation [15, Proposition
6.1].

Though a first glance at (6.74) and (6.75) suggests that it would
still be a long way home to determine the second fundamental form
of M+, in sharp contrast with the case of multiplicity pairs (4, 5) and
(6, 9), where 1-nullity rather quickly pins it down. However, a crucial
observation is that the matrices

(√
2ca wa

)
, 1 ≤ a ≤ 3, form a Clifford

multiplication of type [3, 4, 8],

(6.78) F : R3×R4 → R8, F (ua, vα) = the αth row of
(√

2ca wa
)
,

for orthonormal bases ua and vα, satisfying |F (x, y)| = |x||y| derived
from (6.72).

A second crucial observation is that, with the conversion (6.74)
through (6.77), the first columns of b4, · · · , b7 are, respectively, the

first, second, third, and fourth columns of c#
1 . Similarly, the second

(vs. third) columns of b4, · · · , b7 are the respective columns of c#
2 (vs.

c#
3 ). For instance, at x#

0 , the normalized c#
1 is

c#
1 =


σ1 0 0 0
0 σ1 0 0
0 0 σ2 0
0 0 0 σ2

 ,

by Lemma 6.4 due to 4-nullity at x#
0 . Hence, the first columns of

b4, · · · , b7 are, respectively,

(σ1, 0, 0, 0)tr, (0, σ1, 0, 0)tr, (0, 0, σ2, 0)tr, (0, 0, 0, σ2)tr,
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from which a third crucial observation can be drawn. Indeed, it was
shown in [15, Lemma 7.1] that a generic linear combination

b(x) := x1b4 + · · ·+ x4b7

is of rank no more than 2, so that we may in fact assume that all of
b4, · · · , b7 have zero third column, by the fact that the Koszul complex

0 −→ R
x∧−→ Λ1R4 x∧−→ Λ2R4 x∧−→ Λ3R4 x∧−→ Λ4R4 → 0,

where R := R[x1, x2, x3, x4] is the polynomial ring in four variables and
x∧ means taking the wedge product against x, is a free resolution [23,
Chapter 17]. The assumption that b(x) is generically of rank 2 means
that the wedge product of the second column v2 and third column v3

of b(x) lives in the kernel of

−→ Λ2R4 x∧−→ Λ3R4, v2 ∧ v3 7→ x ∧ (v2 ∧ v3) = 0,

so that either v2 ∧ v3 = 0, in which case they differ by a constant
multiple, or, v2 ∧ v3 = x ∧ w for some w ∈ R4, so that we may assume
the first two columns of b(x) are both x up to a constant multiple. As

a consequence, the conversion says that we may assume c#
3 = 0.

In [17, Section 5], F in (6.78) with the constraint c#
3 = 0 were

classified and given by

c#
1 = ε I, c#

3 = 0

for some ε > 0. c#
2 is of the form

(6.79) c#
2 = a Id+ b

(
I 0
0 ±I

)
, I =

(
0 −1
1 0

)
, b 6= 0,

for some a and b. By conversion,
(6.80)

b4 =


ε a 0
0 b 0
0 0 0
0 0 0

 , b5 =


0 −b 0
ε a 0
0 0 0
0 0 0

 , b6 =


0 0 0
0 0 0
ε a 0
0 ±b 0

 , b7 =


0 0 0
0 0 0
0 ∓b 0
ε a 0


at x0, whose linear combinations are of generic rank 2.

In particular, a glance at Ba, 1 ≤ a ≤ 7, in (6.74) shows that their
third columns are all zero, or equivalently, that there is a common
kernel of generic dimension 1 for all the shape operators Sn for all n.
This gives us a clear geometric picture:

When the isoparametric hypersurface with multiplicities (m,m−) =
(7, 8) is not the one constructed by Ozeki and Takeuchi, consider the
quadric Q6 of oriented 2-planes in the normal space at a generic point
x0 ∈ M+. We know a generic element (n0, n1) in Q6 is 4-null, or
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equivalently, the intersection V of the kernels of Sn0 and Sn1 is 3-
dimensional. By the preceding lemma, there is a nonzero unit vector
v ∈ V common to all kernels of the shape operators at x0. We choose
an orthonormal basis e1, e2, e3 = v spanning V . When viewed at the
mirror point x#

0 = n0 ∈ M+, e1, e2, e3 are converted to three normal

basis vectors of which the three matrices c#
1 , c

#
2 , c

#
3 in (6.74) are of the

form c#
1 = ε Id, c#

3 = 0, and c#
2 given in (6.79). By a symmetric

reasoning, all this holds true as well at x0 when both x0 and x#
0 are

generic.

We are ready to see that the isoparametric hypersurface is one of
the two constructed by Ferus, Karcher, and Münzner with the Clifford
action operating on M−. To this end, for a normal basis n0, · · · , nm of
M+ with base point x0, let us set

(6.81) x∗0 := (x0 + n0)/
√

2, n∗0 := (x0 − n0)/
√

2.

x∗0 is a point on M− and n∗0 is normal to M− at x∗0. The normal space
to M− at x∗0 is Rn∗0 ⊕ E1. Furthermore, the (+1)-eigenspace E∗1 of the
shape operator Sn∗0 is spanned by n1, · · · , nm+ , the (−1)-eigenspace
E∗−1 of Sn∗0 is E0, and the 0-eigenspace E∗0 of Sn∗0 is E−1.

Referring to (4.16), let the counterpart matrices at x∗0 and their
blocks be denoted by the same notation with an additional *. Then,
for α = 1, · · · ,m−,

(6.82)

A∗α = −
√

2
(
Saαp
)
, B∗α = −1/

√
2
(
Saαµ
)
, C∗α = −1/

√
2
(
Spαµ
)
.

There follows from (6.79) important features for the block matrices
in (6.74) and (6.75).

Lemma 6.8. [15, Lemma 7.6, Corollary 7.1] After a frame change
over E1 and E−1 we have the following.

(1): The spectral data (σ,∆) given in Lemma 6.4 equal (Id/
√

2, 0).
(2):

da =

(
da1
0

)
, ga =

(
0
ga1

)
, a = 1, · · · , 7,

where 0 and da1 = ga1 are of size 2× 4.
(3): ca = fa, βa = (γa)

tr, and δa is skew-symmetric for all 1 ≤
a ≤ 7.

Proposition 6.3, in which the equations (6.11) and (6.15) are modi-
fied with appropriate index changes by the recipe (6.82), characterizes
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the Ferus-Karcher-Münzner examples whose Clifford action operates
on M−. It reads, in view of the notation of (6.8) and (6.9),

(6.83)

A∗α = A∗µ,

(a, µ) entry of B∗α = −(a, α) entry of B∗µ,

(p, µ) entry of C∗α = −(p, α) entry of C∗µ,

ωij − ωi
′

j′ =
∑
k

Lijk (θk + θk
′
),

for some smooth functions Lijk, where i, j, k are in the α index range
and i′, j′, k′ are in the µ index range with the respective index values
(i.e., i indicates α = i and i′ indicates µ = i+m−, etc.), recalling (6.7)
through (6.9).

In fact, employing (6.82), the first three equations in (6.83) for M−
take the form

(6.84)

Ba = Ca, ∀a,
Aa is skew-symmetric, ∀a,
A#
a is skew-symmetric, ∀a,

over M+, which is exactly Lemma 6.8 after a slight frame change by
swapping rows. Note, at x∗0, we can now change the sign of the last
four α-rows of Ai without affecting the skew-symmetry of δi and the
property di = gi, ci = fi, so that now βi = γtri , 1 ≤ i ≤ 7, at x are
converted to satisfy the second and third skew-symmetric conditions
in (6.83) at x∗0.

It remains to establish the fourth equation in (6.83). A slight modi-
fication of [11, Lemma 2, p. 11], the last item holds true if either α = i
or α = j indexes a basis vector in the image of the linear map

(6.85) H : E∗+ ⊕ E∗− → E∗0 , (ea, ep) 7→
∑
α

Saαpeα,

which is easily seen to be the direct sum of all eα=l for l 6= 3, 4 (i.e., the
3rd and 4th rows of Ba are zero for all 1 ≤ a ≤ 7). Thus, we need only
show that the last item of (6.83) is valid for i = 3, j = 4 in the α-range.
Referring to the discussions around (6.5), now adopted for M−, since
the distribution ∆ is the kernel of θa + θa+m, a = 1, · · · ,m, we see the
right hand side of the fourth equation of (6.83) is automatically zero
over ∆. Thus to establish the identity, it suffices to show that ω3

4 −ω3′

4′

on the left hand side annihilates ∆, i.e., for v := el′ − el ∈ F we must
verify ω3

4(v) = ω3′

4′ (v), or,

(6.86) ω3
4(el) = −ω3′

4′ (el′), l = 1, · · · , 7,
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since F i
jk = 0 whenever exactly two indexes fall in the same α, µ, a, or

p range [7, (2.9), p. 9].
Now, for x ∈ M+ and n in the unit normal sphere to M+ at x, the

map

(6.87) f : (x, n) 7→ (x∗, n∗) = ((x+ n)/
√

2, (x− n)/
√

2)

sets up a diffeomorphism between the normal bundles of M+ and M−.
Fix a point (x0, n0) in the unit normal bundle of M+, consider the two
sets

S+ := {(x, n) : x+ n = x0 + n0}, S− := {(x, n) : x− n = x0 − n0}.

S± are two 8-dimensional spheres, which can be seen by taking deriv-
ative of x± n = c for a constant c, whose typical tangent space to S±
is the eigenspace E± at (x, n), respectively.

The diffeomorphism f maps S+ to a sphere whose tangent space at
(x∗0, n

∗
0) is the vertical V∗ of the unit normal bundle of M− because

f : (x, n) ∈ S+ 7−→ (c/
√

2, c/
√

2−
√

2n),

so that it is the fiber of the unit normal bundle of M− over x∗0; likewise,
f maps S− to a sphere whose tangent space at (x∗0, n

∗
0) is the horizontal

E∗0 because

f : (x, n) ∈ S− → (−c/
√

2 +
√

2x, c/
√

2).

Thus to calculate the quantities in (6.86), it suffices to observe that (6.85)
gives us the information

dim(
7⋂

a=1

kernel(Btr
a )) = 2,

which is a consequence of item (2) of Lemma 6.8. This translates to
S+ to say that the tangent space to S+ at (x, n) is identified with E+

of the second fundamental form Sn, in which there naturally sits a 2-
dimensional plane that is the intersection of all kernels of the Btr

m-block
of Sm, with m perpendicular to n at x, which forms a 2-plane bundle
P+ over S+. By the same token there is a 2-plane bundle P− over S−
which comes from the intersection of all kernels of the Ctr

m-block of Sm
with m perpendicular to n at x. Now, since da = ga, 1 ≤ a ≤ 7, means
that P+ and P− are parametrized identically in the coordinates, once
we set up the coordinate system of the ambient Euclidean space by the
eigenspace decomposition

Rx⊕ Rn⊕ E0 ⊕ E+ ⊕ E−
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of the shape operator Sn at x for (x, n) ∈ S+, where the third and
fourth rows of Ba are zero for all 1 ≤ a ≤ 7. As a consequence, via
the diffeomorphism f in (6.87), a local basis (e3, e4) spanning P+ is
converted to one on the image sphere whose tangent space at (x∗0, n

∗
0)

is V , and local basis (e3′ , e4′) spanning P− is converted to one on the
image sphere whose tangent space at (x∗0, n

∗
0) is E∗0 . Thus on the image

sphere we derive

ω3
4(el) = −〈de3(el), e4〉 = 〈de3′(el′), e4′〉 = ω3′

4′ (el′),

which gives (6.86), remarking that the negative sign in the first equality
is a result of the sign convention (6.10).

The four equations in (6.83) are satisfied. Thus the isoparamet-
ric hypersurface is one of the two constructed by Ferus, Karcher, and
Münzner, if it is not the one constructed by Ozeki and Takeuchi.

Lastly, for g = 6, Miyaoka classified [44, 45] (see also [43]) the case
when the multiplicity pair is (2, 2). It is homogeneous. The key to her
proof is to show that Condition A holds at all points on either focal
manifold.

The classification of isoparametric hypersurfaces in the sphere has
thus been completed.

7. A few questions

There remain a few fundamental questions in the spherical case that
I find especially interesting to be listed here to conclude the article.

Is there a geometric way to prove that the number g of principal
curvatures is 1, 2, 3, 4, or 6 ? Münzner’s proof [46, II] is topological. A
recent paper of Fang [29] gave another topological proof of Münzner’s
result.

On the other hand, is there a geometric proof for the multiplicity
pairs (m+,m−), m+ ≤ m−, when g = 4? Though Stolz’s approach is
topological and works for more general compact proper Dupin hyper-
surfaces, our classification in [7] exhausts the multiplicity pairs so long
asm− ≥ 2m+−1. So, the question to ask is whether there is a geometric
way to show that the multiplicity pair must be (2, 2), (4, 5), (3, 4), (6, 9),
or (7, 8) when m+ ≤ m− ≤ 2m+ − 2? Similarly, is there a geometric
proof that m+ = m− = 1, or 2 when g = 6?

Immervoll [35] gave a different proof of the result in [7] by isopara-
metric triple systems that Dorfmeister and Neher developed [20]. Is
there a classification of the exceptional cases by the approach of isopara-
metric triple systems?

For g = 6, derive an expansion formula for the Cartan-Münzner
polynomial similar to the one done by Cartan for g = 3 and by Ozeki
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and Takeuchi for g = 4. In addition to Miyaoka’s geometric proof of
homogeneity of such isoparametric hypersurfaces, is there a proof by
utilizing the expansion formula similar to the one given by Cartan for
the case g = 3 that also enjoys equal multiplicity? As Miyaoka’s proof
pointed out, Condition A should play a decisive role.
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251(1980), II, 256(1981).

[47] K. Nomizu, Some results in E. Cartan’s theory of isoparametric families of
hypersurfaces, Bull. Amer. Math. Soc. 79(1973), 1184-1188.
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Tôhoku Math. J. 21(1969), 363-388.
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