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Abstract. Up to now the only known example in the literature of constantly curved
holomorphic 2-sphere of degree 6 in the complex G(2, 5) has been the first associated curve
of the Veronese curve of degree 4. By exploring the rich interplay between the Riemann
sphere and projectively equivalent Fano 3-folds of index 2 a nd degree 5, we prove, up to
the ambient unitary equivalence, that the moduli space of generic (to be precisely defined)
such 2-spheres is semialgebraic of dimension 2. All these 2-spheres are verified to have
non-parallel second fundamental form except for the above known example.

1. Introduction

Minimal surfaces constitute one of the most enduring topics in Differential Geometry
that not only enjoys its deep links with partial differential equations, complex analysis, and
algebraic curves, but also finds intriguing connections to the physical world. In 1980, Din and
Zakrzewski [17] classified complex projective σ-models, or, mathematically, harmonic maps
from the 2-sphere to the ambient projective space, to be the (projectivized) basis elements
of a Frenet frame of a holomorphic CP 1 into the ambient space. Subsequently, Burstall and
Wood [7], Chern and Wolfson [11], and Uhlenbeck [38] independently generalized it to other
ambient spaces by different methods.

Of all minimal surfaces, those of constant curvature in different ambient spaces form a
model class that have continually drawn attention, such as Calabi [9], Wallach [39], Do
Carmo-Wallach [19], Chen [10], Barbosa [3], Kenmotsu [28], and Bryant [6] in the real space
forms, Kenmotsu [29], Bando-Ohnita [2], Bolton-Jensen-Rigoli-Wood [4], Chi-Jensen-Liao
[12], and Kenmotsu [30] in the complex projective spaces, and Yau [40] in Kähler manifolds
of nonnegative constant holomorphic sectional curvature . In particular, constantly curved
minimal 2-spheres in the real space forms are Bor̊uvka spheres [5], up to rigid motion.
Similarly, constantly curved minimal 2-spheres in the complex projective spaces are, up to
rigid motion, the (projectivized) basis elements of the Frenet frame of the Veronese curve of
constant curvature, where the proof followed from Calabi’s rigidity principle [8] that states
that if the isometric embedding from one complex manifold into the complex projective
space exists, then it is unique up to rigid motion.

The rigidity principle of Calabi no longer holds for general ambient spaces. Motivated by
the Grassmannian σ-models introduced by Din and Zakrzewski [18] and the rigidity prin-
ciple, the first named author and Zheng [14] classified the noncongruent, constantly curved
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holomorphic 2-spheres of degree 2 in G(2, 4) into two 1-parameter families, by exploring the
method of moving frames and Cartan’s theory of higher order invariants [24]. Later on, Li
and Yu [32] classified all constantly curved minimal 2-spheres in G(2, 4), using the Plücker
embedding and the theory of harmonic sequence.

The next simplest ambient space is the complex Grassmannian G(2, 5). By analyzing
a 2 × 5 matrix representation of a holomorphic CP 1, constantly curved holomorphic 2-
spheres in G(2, 5) are divided into two classes by Jiao and Peng, the singular and the
nonsingular ones (a technical condition different from the usual geometric meaning, see
Section 2.2 for definition). They classified nonsingular constantly curved holomorphic 2-
spheres of degree less than or equal to 5 in G(2, 5), and proved the nonexistence of such
spheres with degree 6 ≤ d ≤ 9 [25, 26]. For the singular category, however, as the degree
increases the computational complexity involved in their method rises dramatically. It is
thus technically difficult to apply the method to construct singular 2-spheres in general.
Subsequently, there have emerged several partial classifications (e.g. under the condition of
total unramification or homogeneity) of constantly curved holomorphic (minimal) 2-spheres
in G(2, 5) or G(2, n) in general; see [23, 35] and the references therein.

Constantly curved holomorphic 2-spheres in G(2, 4) and G(2, 5) have also been studied by
Delisle, Hussin and Zakrzewski in [16] from the viewpoint of Grassmannian σ-models, where
the classification results they obtained coincide with those mentioned above. Moreover, they
posed a conjecture about the upper bound of the degrees of constantly curved holomorphic
2-spheres in the Grassmannians. This conjecture was affirmed by them in the case of G(2, 5),
for which the upper bound equals 6 (see also a recent paper [22] with more detailed proof
by He).

At the critical degree d = 6, however, there does exist a singular (in the above sense)
constantly curved holomorphic 2-sphere of degree 6 in G(2, 5),(

1 2z
√

6z2 2z3 z4

0 1
√

6z 3z2 2z3

)
, (1.1)

referred to in this paper as the standard Veronese curve in G(2, 5). To the authors’ knowl-
edge, it has been the only known example in the literature. Surprisingly, we will show in
this paper that the moduli space of constantly curved holomorphic 2-spheres in G(2, 5) is a
2-dimensional semialgebraic set, modulo rigid motion, out of which many explicit examples
can be constructed.

Different from all existing methods, to see whether there are constantly curved holomor-
phic examples of degree 6 other than the standard Veronese curve in G(2, 5), let us return
to our paper [13] for motivation, where we investigated constantly curved holomorphic (and
minimal) 2-spheres of degree d in the complex hyperquadric. Such a holomorphic 2-sphere
is a rational normal curve of degree d sitting in a projective d-plane, so that the 2-sphere
lies in the intersection of the d-plane and the hyperquadric called a linear section of the
hyperquadric, which is itself a quadric (may be singular). Thus, the moduli space of such
2-spheres is essentially a fibered space over the base space that is a semialgebraic subset of
the variety of linear sections of the hyperquadric.

In a similar vein, albeit more sophisticated, via the Plücker embedding, a holomorphic
2-sphere of degree 6 contained in G(2, 5) ⊂ CP 9 is a rational normal curve sitting in a
projective 6-plane L in CP 9; thus, the curve lies in the linear section L ∩ G(2, 5). Castel-
nuovo [15] showed that generic (see Section 3 for definition) such linear sections constitute
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the intriguing class of Fano 3-folds of index 2 and degree 5 all of which are projectively
equivalent (see also [37] for a detailed modern account and Section 3 for a quick overview).

Employing PSL(2,C)-representations, Mukai and Umemura [34] constructed a beautiful
Fano 3-fold of index 2 and degree 5, which can be identified naturally with the linear section
of G(2, 5) cut out by the 6-plane L0 containing the above standard Veronese curve, where
L0 turns out to be precisely the irreducible PSL(2,C)-module V6 of dimension 7. This
fits ideally in our differential-geometric framework for computation when the condition of
constant curvature is engaged. By exploring Mukai and Umemura’s orbit decomposition
structure, we may, by the fact that a rational normal curve is extremal in the sense of
Castelnuovo [1], lift every holomorphic 2-sphere of degree 6 in V6 ∩G(2, 5) to a line in the
natural CP 3 containing PSL(2,C) (see Lemma 4.1 in Section 3). Since all generic Fano
3-folds of index 2 and degree 5 are projectively equivalent, this lifting property provides us
with a vantage point to parametrize generic holomorphic 2-spheres of degree 6 in G(2, 5),
for us to be able to narrow down the Fano 3-folds in which constantly curved holomorphic
2-spheres of degree 6 live.

Theorem 1. Let γ : CP 1 → G(2, 5) be a constantly curved holomorphic 2-sphere of degree
6. Suppose that the 6-plane L spanned by γ is generic (in the Castelnuovo sense). Then up
to U(5), L differs from L0 by a diagonal transformation of GL(5,C).

An elaborate unitary analysis then enables us to further determine the family of diagonal
transformations A ∈ GL(5,C) that allows the linear section A (L0 ∩G(2, 5)) to contain
constantly curved holomorphic 2-spheres of degree 6.

Theorem 2. The moduli space of generic constantly curved holomorphic 2-spheres of degree
6 in G(2, 5) is a 2-dimensional semialgebraic set, up to the ambient U(5)-equivalence.

Of particular interest are three points in M, for each of which the corresponding Fano
3-fold contains a unique constantly curved holomorphic 2-sphere of degree 6, whereas the
Fano 3-fold corresponding to a point other than the three inM contains exactly two distinct
constantly curved holomorphic 2-spheres conjugated to each other in an appropriate sense
(see Section 6).

Our approach facilitates the explicit construction of many new examples, through algebro-
geometric means, of constantly curved 2-spheres of degree 6. Furthermore, it enables us to
verify with ease that the second fundamental form of all generic constantly curved holomor-
phic 2-spheres of degree 6 are nonparallel, and thus all are nonhomogeneous, except for the
standard Veronese curve.

The paper is organized as follows. Section 2 is devoted to recall the representation the-
ory of PSL(2,C), as well as Jiao and Peng’s classification of nonsingular (in their sense)
constantly curved holomorphic 2-spheres in G(2, 5). In Section 3, we introduce briefly the
theory of generic linear sections of G(2, 5), and the Fano 3-fold constructed by Mukai and
Umemura, from which the parameterization of generic holomorphic 2-spheres is obtained in
Section 4. Starting from Section 5, we take the constant curvature condition into consider-
ation and prove Theorem 1 in the section. We devote Section 6 to investigate the existence
and uniqueness results for constantly curved holomorphic 2-spheres in a given generic linear
section. The moduli space characterized in Theorem 2 is studied in Section 7, where we also
exhibit interesting individual as well as 1-parameter families of new examples.
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2. Priliminaries

2.1. Irreducible representations of PSL2(C). Let Vn the the space of binary forms of
degree n in two variables u and v, on which PSL2(C) (to be denoted by PSL2) acts by

PSL2 × Vn → Vn, (g, f) 7→ (g · f)(u, v) , f(g−1 · (u, v)t). (2.1)

It is well-known that Vn, n ∈ Z≥0, are the only finite-dimensional irreducible representations
of PSL2.

Choose the following basis of Vn,

el ,
(
n
l

) 1
2un−lvl, l = 0, . . . , n. (2.2)

Under this basis, write

(e0, . . . , en) ρn(g) , (g · e0, g · e1, . . . , g · en). (2.3)

The representation ρn(g) : PSL2 → GL(n+ 1;C) induces the wedge-product representa-
tion

PSL2 × Vn ∧ Vn → Vn ∧ Vn, (g, ek ∧ el) 7→ (g · ek) ∧ (g · el), 0 ≤ k, l ≤ n. (2.4)

For the sake of clarity, we view Vn ∧ Vn as the space of anti-symmetric matrices ∧2Cn+1,
by identifying ek ∧ el with the anti-symmetric matrix Ekl − Elk ∈ Mn+1(C), where the
only nonvanishing entry of Ekl is 1 at the (k, l) position, 0 ≤ k < l ≤ n. With the basis
{ek ∧ el | 0 ≤ k < l ≤ n} (see (2.2)), it is not difficult to obtain the wedge-product
representation in matrix form,

ρn ∧ ρn : PSL2 × ∧2Cn+1 → ∧2Cn+1, (g,A) 7→ (ρn(g)) ·A · (ρn(g))t.

The Clebsch-Gordan formula states that

Vn ∧ Vn ∼= V2n−2 ⊕ V2n−6 ⊕ . . .⊕ Vr, (2.5)

where r is the remainder of 2n − 2 divided by 4, moreover, for any given even number
p ∈ [1, n], the projection Vn ∧ Vn → V2n−2p can be formulated by

(f, h) 7→ (f, h)p , (
(n− p)!
n!

)2
p∑
i=0

(−1)i
(
p

i

)
∂pf

∂up−i∂vi
∂ph

∂ui∂vp−i
. (2.6)

which is PSL2-equivariant, and is called the p-th transvectant.

2.2. Holomorphic 2-spheres in G(2, 5). We briefly review some basic facts of constantly
curved holomorphic 2-spheres in the complex Grassmannian G(2, 5), and along the way
introduce those nonsingular ones that Jiao and Peng [25] defined and classified.

Throughout, we equip G(2, 5) with the standard Kähler metric

g , tr
(
(I2 + P P ∗)−1dP (I5 + P ∗ P )−1dP ∗

)
,

where P ∈ G(2, 5) is seen as a 2× 5 matrix, which is induced from the Fubini-Study metric
of CP 9 when G(2, 5) is realized as a subvariety of CP 9 by the Plücker embedding, .

i : G(2, 5)→ P(∧2C5) ∼= CP 9, span{u, v} 7→ [u ∧ v].
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Explicitly, let {ε0, ε1, . . . , ε4} be a basis of C5. Then {εi ∧ εj | 0 ≤ i < j ≤ 4} forms a basis
of ∧2C5 so that p =

∑
i,j pij εi ∧ εj belongs to G(2, 5) if and only if p ∧ p = 0, which is

equivalent to
p01p23 − p02p13 + p03p12 = 0, p01p24 − p02p14 + p04p12 = 0,

p01p34 − p03p14 + p04p13 = 0, p02p34 − p03p24 + p04p23 = 0,

p12p34 − p13p24 + p14p23 = 0.

(2.7)

Remark 2.1. It follows from the definition that G(2, 5) is PSL2-invariant under the wedge-
product action ρ4 ∧ ρ4 given in (2.4).

Let ϕ : CP 1 → G(2, 5) be a holomorphic 2-sphere. It follows from the Normal Form
Lemma [36] that there exist two holomorphic curves f, g : CP 1 → CP 4, such that ϕ =
span{f, g}. Explicitly, choosing an affine coordinate z on CP 1, we can write f(z) =
(f0(z), . . . , f4(z)) and g(z) = (g0(z), . . . , g4(z)) as row vectors with polynomial entries except
at some isolated points.

In view of Remark 2.1, we obtain that ϕ is of constant curvature K if and only if i ◦ ϕ
is of constant curvature K under the Plücker embedding. This guarantees that the rigidity
principle of Calabi can be employed to study constantly curved holomorphic 2-spheres in
G(2, 5), which we rephrase as follows for reference.

Lemma 2.1. Let f : CP 1 → CPn be a holomorphic 2-sphere of degree d. The following are
equivalent.

(1) The Gauss curvature K of f is 4
d . Furthermore, up to the action of U(n + 1) and

Möbius reparametrization, f is given by the Veronese sphere

Zd(z) , [1 :
√
dz : · · · :

√(
d
k

)
zk : · · · : zd]t. (2.8)

(2) There is an affine chart z ∈ C over which |f |2 = (1 + |z|2)d.
(3) There is an affine chart z ∈ C over which f =

∑d
k=0

√(
d
k

)
Akz

k, and {A0, A1, · · · , A6}
forms an orthonormal basis of the d-plane spanned by f .

For a constantly curved holomorphic 2-sphere ϕ : CP 1 → G(2, 5), it is known [25, 31, 32]

that ϕ can be parameterized as ϕ =
(
ϕ1(z), ϕ2(z)

)t
with

ϕ1(z)=
(
1, 0, ϕ12(z), ϕ13(z), ϕ14(z)

)
, ϕ2(z)=

(
0, 1, ϕ22(z), ϕ23(z), ϕ24(z)

)
, (2.9)

where ϕ1i(z) and ϕ2i(z) (2 ≤ i ≤ 4) are polynomials vanishing at z = 0. In the sequel,
(2.9) will be called a standard parameterization of ϕ. We point out that this kind of pa-
rameterization is not unique. In fact, if {ϕ1, ϕ2} is a standard parameterization of ϕ, then
{αϕ1 +βϕ2,−β̄ϕ1 + ᾱϕ2} is also a standard parameterization after rotating ε0 and ε1 while
maintaining |α|2 + |β|2 = 1.

In [25], a holomorphic 2-sphere ϕ : CP 1 → G(2, 5) is called nonsingular if there exists a
standard parameterization {ϕ1, ϕ2} of ϕ, such that [ϕ1(∞)] 6= [ϕ2(∞)] in CP 4. Otherwise,
ϕ is called singular. It is easy to verify that ϕ is nonsingular if and only if there exists a
standard parameterization {ϕ1, ϕ2} of ϕ, such that

degϕ = degϕ1 + degϕ2. (2.10)

Using a standard parameterization, one can construct explicitly nonsingular examples as
was done by Jiao and Peng in [25]. Indeed, under the nonsingular assumption, Jiao and
Peng in the paper proved the following nonexistence result.
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Theorem 2.1. There does not exist nonsingular holomorphic constantly curved 2-spheres
of degree 6 in G(2, 5).

The idea goes as follows. By contradiction, otherwise, It would follow from (2.10) that
we had only three possibilities that (degϕ1,degϕ2) = (5, 1), (4, 2), (3, 3). In each case, we

obtained vectors Ak, 0 ≤ k ≤ 6, where i ◦ ϕ = ϕ1 ∧ ϕ2 ,
∑6

k=0

√(
d
k

)
Akz

k, in terms of

undermined coefficients of ϕ1 and ϕ2 to violate item (3) of Lemma 2.1.
As the degree of ϕ increases, however, the number of undetermined coefficients rises

dramatically, so that it is technically difficult to apply the method to construct singular
2-spheres.

It is readily verified that the Veronese curve (1.1) given in the introduction is singular in
terms of Jiao and Peng’s definition, where a standard parameterization in the sense of (2.9)
can be chosen to be (

1 0 −
√

6z2 −4z3 −3z4

0 1
√

6z 3z2 2z3

)
. (2.11)

We point out that this example is smooth (nonsingular) in the usual algebro-geometric
sense, which is indeed what we are after.

2.3. Reducible and Irreducible holomorphic curves in G(2, 5). For later purposes,
we develop the extrinsic geometry of holomorphic curves in G(2, 5) from the viewpoint of
developable surfaces.

Let f : M → G(2, 5) be a holomorphic map from a Riemann surface M . Composing with

the Plücker embedding, F , i ◦ f is a holomorphic curve in CP 9 = P (∧2C5). Since F lies
in G(2, 5), we have F ∧ F ≡ 0, whose derivative with respect to a local complex coordinate
z yields that F ∧ ∂F/∂z = 0. Consider the developable surface D of F in CP 9, spanned by
F and its tangent line ∂F/∂z,

D , {[uF + v ∂F/∂z] | [u : v] ∈ CP 1}.

Lemma 2.2. The following are equivalent.

(1) The developable surface D of F lies in G(2, 5).
(2) ∂F/∂z ∧ ∂F/∂z ≡ 0.

The lemma follows by differentiating (uF + v ∂F/∂z) ∧ (uF + v ∂F/∂z) = 0 while em-
ploying F ∧ ∂F/∂z = 0.

Inspired by the first item in Lemma 2.2, we call a holomorphic curve f : M → G(2, 5)
reducible, if the developable surface of D of F = i ◦ f also lies in G(2, 5); otherwise, we call
f irreducible. If f : M → G(2, 5) is irreducible, then ∂F/∂z ∧ ∂F/∂z has isolated zeroes,
which we call ramified points (with multiplicity).

Remark 2.2. In the theory of harmonic sequence, a holomorphic curve f : M → G(2, 5) is
called reducible if the rank of the next term f1 is strictly less than 2; see [27]. This definition
coincides with the above definition. We thank Professor L. He for helpful discussions about
it.

It was proven in [20] that a constantly curved reducible holomorphic 2-sphere of degree
6 is rigid, which is unitarily equivalent to the standard Veronese curve (1.1) in G(2, 5). As
a result, we need only consider irreducible holomorphic 2-spheres in G(2, 5) in the sequel.
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3. Generic linear sections of G(2, 5) and Fano 3-folds of index 2 and degree 5

To motivate, a holomorphic 2-sphere of degree 6 in G(2, 5) lies in a 6-plane L in P(∧2C5) ∼=
CP 9, and so it lives in the intersection L ∩ G(2, 5) called a linear section of G(2, 5). The
dual 2-plane of L in (∧2C5)∗ is given by a linear system

λA+ µB + τC, [λ : µ : τ ] ∈ CP 2, (3.1)

where A,B,C are fixed skew-symmetric matrices of size 5 × 5 identified with elements in
(∧2C5)∗. Following [37], we say that L is generic if all matrices in the linear system are of
rank 4, and the associated cut L ∩G(2, 5) is referred to as a generic linear section. Let us
look at a concrete example next.

By the Clebesch-Gordan formula (2.5), we obtain that ∧2C5 ∼= V6⊕V2. Here, we identify
V6 with a PSL2-invariant subspace of 5× 5 anti-symmetric matrices by

6∑
i=0

√(
6
i

)
aiu

6−ivi 7→


0 a0 a1

√
3
5a2

1√
5
a3

−a0 0
√

2
5a2

2√
5
a3
√

3
5a4

−a1 −
√

2
5a2 0

√
2
5a4 a5

−
√

3
5a2 −

2√
5
a3 −
√

2
5a4 0 a6

− 1√
5
a3 −
√

3
5a4 −a5 −a6 0

 . (3.2)

An orthonormal basis of V6 is given by

E0 ,e0 ∧ e1, E1 , e0 ∧ e2, E2 ,
√

3/5 e0 ∧ e3 +
√

2/5 e1 ∧ e2
E3 ,1/

√
5 e0 ∧ e4 + 2/

√
5 e1 ∧ e3, E4 ,

√
3/5 e1 ∧ e4 +

√
2/5 e2 ∧ e3

E5 ,e2 ∧ e4, E6 , e3 ∧ e4.

(3.3)

It is readily checked that uv(u4−v4) (respectively, u6) in V6 corresponds to (E1−E5)/
√

6
(respectively, E1). Note that, the dual 6-plane to V6 is given by a linear system of the form
in (3.1), where

A ,
√

6p03 − 3p12 = 0, B , 2p04 − p13 = 0, C ,
√

6p14 − 3p23 = 0. (3.4)

It is also readily checked that the rank of λA + µB + τC is 4 for every [λ : µ : τ ] ∈ CP 2.
Therefore, as a linear section,

H3
0 , V6 ∩G(2, 5)

is generic.
Note also that the space V6 is the 6-plane spanned by the standard Veronese curve in (1.1),

which is precisely the orbit PSL2 ·u6 confirmed by a computation with (E0, · · · , E6) ·Z6(z),
where Z6 is given in (2.8), to see that they are agreeable.

We include a short outline of the following well known fact for the reader’s convenience.
Our reference is [37].

Theorem 3.1. All generic linear sections L ∩G(2, 5) are PGL(5,C)-equivalent to H3
0.

To begin, the Pfaffian of a (2n) × (2n) skew-symmetric matrix M with entries aij is
defined to be

pf(M) ,
∑
σ

sgn(σ) ai1 j1ai2 j2 · · · ain jn ,

where σ : {1, 2, · · · , 2n} → {i1, j1, i2, j2, · · · , in, jn}, in order, runs over permutations of
{1, 2, · · · , 2n} satisfying is < js, 1 ≤ s ≤ n, and i1 < i2 < · · · < in. The Pfaffian enjoys
the property that if N is a (2n+ 1)× (2n+ 1) skew-symmetric matrix of rank 2n, then the
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1-dimensional kernel of N is spanned by the vector (v1, · · · , v2n+1), where vi is the diagonal
Pfaffian of the (2n) × (2n) skew-symmetric matrix obtained by deleting the ith row and
column.

Now, since the dual 2-plane of a generic 6-plane L in ∧2(C5) is a linear system λA+µB+
τC, [λ : µ : τ ] ∈ CP 2, all of whose 5× 5 skew-symmetric matrices are of rank 4, we can use
the associated diagonal Phaffians to define the center map

c : [λ : µ : τ ] ∈ CP 2 → projectivized center of λA+ µB + τC ∈ CP 4.

It is then verified that the center map is an embedding of CP 2 into CP 4 of degree 2, and
thus the image of c, called the projected Veronese surface, is a generic projection from
the standard Veronese surface in CP 5 to CP 4. Consequently, any two such 2-plane linear
systems are PGL(5,C)-equivalent, and so are the corresponding linear sections. In fact,
L ∩G(2, 5) is the closure of all lines in CP 4 intersecting the associated projected Veronese
surface in three distinct points.

Exploring the center map c, the authors in [37] also obtained the automorphism group of
a generic linear section L ∩G(2, 5).

Theorem 3.2. The automorphism group of a generic linear section L ∩G(2, 5) is PSL2.

Generic linear sections L∩G(2, 5) constitute all Fano 3-folds of index 2 and degree 5, first
classified by Castelnuovo [15], which is to be denoted by H3 henceforth; here, the degree is
that of the Fano 3-fold as a subvariety of CP 9, whose index is 2, the difference between its
degree and codimension in G(2, 5), so that its anti-canonical bundle is ' O(2). To reference,
we call H3

0 = V6 ∩G(2, 5) introduced earlier the standard Fano 3-fold.
We point out that the automorphism group of a Fano 3-fold of index 2 and degree 5

has also been studied by Mukai and Umemura in [34] from the viewpoint of algebraic
group actions. By considering the action of PSL2 on V6, they proved that the closure of
PSL2 · uv(u4 − v4) is precisely H3

0. In the same paper, they also obtained the following
beautiful orbit decomposition structure on H3

0.

Theorem 3.3.

H3
0 = PSL2 · uv(u4 − v4) = PSL2 · uv(u4 − v4) t PSL2 · u5v t PSL2 · u6.

Remark 3.1. In the above orbit decomposition, PSL2 ·uv(u4−v4) is of dimension 3, which
is parameterized as

f1 : PSL2 7→ PV6 :

(
a b
c d

)
7→
(
a b
c d

)
· uv(u4 − v4) = [a0 : a1 : · · · : a6],

a0 , −
√

6d5c+
√

6dc5, a1 , d
4 (ad+ 5 bc)− 5 ac4d− bc5,

a2 , −bd3 (ad+ 2 bc)
√

10 + ac3 (2 ad+ bc)
√

10,

a3 , b
2d2 (ad+ bc)

√
30− a2c2 (ad+ bc)

√
30,

a4 , −b3d (2 ad+ bc)
√

10 + a3c (ad+ 2 bc)
√

10,

a5 , 5 ab4d+ b5c− a4 (ad+ 5 bc) , a6 , −
√

6b5a+
√

6ba5.

(3.5)

Similarly, the orbit PSL2 · u6 is parameterized as(
a b
c d

)
7→ [d6 : −

√
6bd5 :

√
15b2d4 : −

√
20b3d3 :

√
15b4d2 : −

√
6b5d : b6], (3.6)
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It is precisely the Veronese curve Z6 in (2.8). Its developable surface constitutes the
closure of the 2-dimensional orbit (see [34]),

PSL2 · u5v = PSL2 · u5v t PSL2 · u6,

where PSL2 · u5v has the following parameterization

f2 : PSL2 7→ PV6 :

(
a b
c d

)
7→
(
a b
c d

)
· u5v = [b0 : b1 : · · · : b6],

b0 , −
√

6d5c, b1 , d
4 (ad+ 5 bc) , b2 , −bd3 (ad+ 2 bc)

√
10,

b3 , b
2d2 (ad+ bc)

√
30, b4 , −b3d (2 ad+ bc)

√
10,

b5 , 5 ab4d+ b5c, b6 , −
√

6b5a.

(3.7)

In fact, the developable surface has another PSL2-invariant characterization. Over V6,
consider the SL2-invariant quadratic form q , (p, p)6 defined in (2.6). A straightforward
computation gives

q(p) , 2X0X6 − 2X1X5 + 2X2X4 −X2
3 , p , (X0, X1, · · · , X6) ∈ V6. (3.8)

Moreover, it is directly checked that q vanishes on the developable surface, i.e.,

q(p) = 0, p , (b0, · · · , b6).

As a result, since the quadric Q5 defined by q = 0 and H3
0 are both PSL2-invariant in

P(V6), the developable surface is precisely Q5 ∩H3
0, as the former is the only 2-dimensional

PSL2-invariant orbit,

Remark 3.2. The two orbits of H3
0 of dimension > 1 are given below:

(1) The open orbit PSL2 ·uv(u4−v4) whose isotropy group at uv(u4−v4) is a finite subgroup

of PSL2 of order 24 consisting of the following elements (ξ , e2kπ
√
−1/8, k , 0, 1, . . . , 3):(

ξ 0
0 1/ξ

)
,

(
0 ξ
−ξ 0

)
, 1/
√

2 ·
(

1/ξ −1/ξ
ξ ξ

)
,

1/
√

2 ·
(√
−1/ξ −1/ξ
ξ −

√
−1ξ

)
, 1/
√

2 ·
(
−1/ξ −1/ξ
ξ −ξ

)
, 1/
√

2 ·
(
−
√
−1/ξ −1/ξ
ξ

√
−1ξ

)
.

(2) The 2-dimensional orbit PSL2 · u5v whose isotropy group at u5v is

{
(
a 0
0 1/a

)
| a ∈ C∗}.

For later computational purposes, we prove the following.

Lemma 3.1. Let A be a matrix in PSL2. Then

ρ4(A) · (E0, E1, . . . , E6) = (E0, E1, . . . , E6) ρ
6(A), (3.9)

where the left-hand side with a dot is the ∧2-action of ρ4(A) on V6 ⊂ P (∧2(C5)) and the
right-hand side without a dot is a matrix multiplication.

Proof. Since the Clebsch-Gordon transvectant π , f ∧ g → (f, g)1 in (2.6) is PSL2-
equivariant, we obtain from the commutativity of the diagram

9



V4 ∧ V4 V4 ∧ V4

V6 V6

ρ4(A)

π π

ρ6(A)

(3.10)

that ρ6(A) : V6 → V6 is induced from the ∧2-action of ρ4(A) (see (2.4)). �

4. Parameterization of holomorphic 2-spheres of degree 6 in G(2, 5)

Now that the standard Fano 3-fold H3
0 can be realized as the linear section V6 ∩G(2, 5),

and that all other generic linear sections of G(2, 5) are PGL(5,C) projectively equivalent
to H3

0, we can parametrize all holomorphic 2-spheres living in a generic linear section by
first parametrizing all such curves that live in H3

0, followed by transforming them to other
generic linear sections by the PGL(5,C)-action. This will play a central role in the sequel
to facilitate the computation when the condition of constant curvature is imposed. We start
with the parametrization in H3

0.
We identify the projectivization of the space of 2 × 2 nonzero (complex) matrices with

CP 3 by

ι :

(
a b
c d

)
7→ [a : b : c : d].

Via ι, the subset of 2 × 2 matrices of zero determinant is the following PSL2-invariant
hyperquadric Q2 of dimension 2,

Q2 , {[a : b : c : d] ∈ CP 3 | ad− bc = 0}. (4.1)

Note that we can identify PSL2 with CP 3 \Q2.

Lemma 4.1. Let F : CP 1 → H3
0 be a holomorphic 2-sphere of degree 6 distinct from the

standard Veronese curve. Then there exists a holomorphic lift ψ : CP 1 → CP 3, such that
F = fi ◦ψ (for fi, see (3.5) and (3.7)) with degψ = 1, i.e., that Imψ is a projective line in
CP 3.

Proof. Case 1. Assume that F does not lie in the 2-dimensional orbit PSL2 · u5v.
Recall the invariant quadric Q5 defined by q = 0 in (3.8), which cuts the rational normal

curve γ , F (CP 1) of degree 6 in a divisor of degree 12 with support q1, · · · , ql by Bezout’s

theorem. Let pi , F−1(qi), 0 ≤ i ≤ l.
Consider the complementary set V , CP 1 \ {p1, . . . , pl}; F (V ) lies in the 3-dimensional

orbit Y , PSL2 · uv(u4 − v4). Let U ⊂ CP 3 be an irreducible component of the fibered
product

U ⊂ V ×Y PSL2 , {(p,B) : F (p) = f1(B)}
with the two standard projections π1 and π2 onto V and PSL2 ⊂ CP 3, respectively. Then
U is a unramified covering space of V of some finite covering degree d, by item (1) of Remark
3.2. We extend U to a compact Riemann surface M by monodromy representations [21,
p.51], [33, p.92]. Hence, we obtain a commutative diagram

M CP 3

CP 1 CP 6

g

ϕ f1

F

(4.2)

10



where g extends π2 and ϕ extends π1; M is the desingularization of the closure of π2(U) in
CP 3. Assume that the degree of the curve g(M) equals k in CP 3.

In the following, we say that a hypersurface G = 0 of degree t in CP 6 is generic if it does
not contain γ and it cuts out a divisor of degree 6t on γ whose support lives in F (V ).

A generic hyperplane H =
∑6

i=0 ci ai = 0 in CP 6 with coordinates [a0 : · · · : a6] cuts γ in
a divisor DH = z1 + · · · + z6 with z1, . . . , z6 ∈ F (V ), while f1 pulls the hyperplane H = 0
back to a hypersurface of degree 6 in CP 3 that cuts M , via g, in a divisor D of degree 6k
by Bezout’s theorem. Since f1 ◦ g is a covering map of degree d over F (V ), or rather, ϕ is
a covering map of degree d over V , whichever is convenient, the divisor D, via ϕ, contains
the pullback divisor D0 of F ∗(DH) = F−1(z1) + · · ·+ F−1(z6) in V ⊂ CP 1, i.e.,

D0 = (F ◦ ϕ)∗(DH) = φ∗(F−1(z1) + · · ·+ F−1(z6)),

totaling 6d in number. Write D , D0 + F . The remainder F comes from setting the
coordinate functions zero, i.e.,

ai ◦ f1 ◦ g = 0, 0 ≤ i ≤ 6, (4.3)

whose support is the base locus of the hypersurface cut (f1 ◦ g)∗(H) = 0 on M . We have
deg(F) = 6k − 6d (so, d ≤ k) .

Recall the invariant quadric Q2 ⊂ CP 3 given in (4.1). Let Q be the pullback divisor of
g∗(Q2) = 0 on M . We have deg(Q) = 2k, again by Bezout’s theorem.

Sublemma 4.1. F ≤ Q. In particular, k ≤ 3d/2.

Proof. Recall the quadratic form q in (3.8). Via f1 we have the remarkable SL2-invariant
identity

2a0a6 − 2a1a5 + 2a2a4 − a23 = (ad− bc)6, (4.4)

where a0, · · · a6 are given in (3.5).
Let p be in the support of F . In light of (4.4), we assert immediately by (4.3) that

g(p) ∈ Q2. (In fact, F is supported over a subset of p1, · · · , pl whose images via g lie in six
lines contained in Q2 when one solves ai = 0, 0 ≤ i ≤ 6, by (3.5).)

Multiplying by a matrix on the left, we may assume that

g(p) =

(
1 0
0 0

)
or

(
1 m
0 0

)
or

(
0 1
0 0

)
,

where m4 = 1, while multiplying the isotropy group on the right (see Remark 3.2), we may

further assume that g(p) =

(
1 0
0 0

)
. Hence, ordp(a) < min{ordp(b), ordp(c), ordp(d)}. (ordp

denotes the local holomorphic vanishing order at p.)

Subcase 1: If ordp(d) ≥ ordp(b), then since locally b4 6= b lest a6 in (3.5) would be
identically zero to violate the nondegeneracy of γ in CP 6, we obtain

ordpF ≤ ordp(a6) = ordp(b) ≤ ordp(ad− bc).

Subcase 2: If ordp(d) < ordp(b), by a5 = d(b4 + (b5/d)c− 6a5)− 5da4(a− (b/d)c) we see

ordpF = ordp(d) = ordp(ad− bc).

The first statement follows. In particular, 6k − 6d = deg(F) ≤ 2k so that k ≤ 3d/2. �
11



Lastly, we show that d = 1 to force k = 1 by Sublemma 4.1. To this end, notation as
above, recall that γ, being a rational normal curve, is an extremal curve in the sense of
Castelnuovo so that it is projectively normal [1, p.117, p.140], [33, pp.230-231], i.e., that for
all t ∈ N, any divisor in the complete linear system |tDH | on γ is obtained by cutting γ by
a hypersurface in CP 6 of degree t not containing γ; the (projective) dimension of the space
of all these hypersurfaces, modulo the ones containing γ, is thus 6t.

Now, any generic hypersurface G = 0 of degree t in CP 6 cuts γ in 6t points w1, . . . , w6t ∈
F (V ), so that G = 0 is pulled back via f1 to a hypersurface of degree 6t in CP 3 that cuts M
via g in a divisor Dt,G of degree 6tk on M by Bezout’s theorem, for which 6td points consti-

tute the ”moving” part D(m)
t,G consisting of the pullback, via ϕ, of F−1(w1), · · · , F−1(w6t) ∈

V , and the ”fixed” part D(f)
t,G that is supported over that of F and thus equals tF (see

the remark immediately following the proof) as it is assumed by the (generic) hypersurface
Ht = 0 of degree t, so that

Dt,G = D
(m)
t,G + tF ∼ tD = tD0 + tF .

Therefore, D(m)
t,G is in the complete linear system |tD0|, giving rise to a meromorphic function

of degree 6td in L(tD0), which consists of all meromorphic functions on M whose polar
divisors are no greater than tD0.

Conversely, suppose we are given a generic meromorphic function h ∈ L(tD0) of degree
6td in the sense that its zero divisor lives in ϕ−1(V ). Define

h∗(x) , Πy∈ϕ−1(x) h(y)µy ,

where µy is the ramification index of ϕ at y. This is a well-defined meromorphic function of
degree 6t over CP 1 [1, p.281] whose polar divisor is F ∗(tDH) on V , and whose zero divisor is
cut out by a generic hypersurface G = 0 of degree 6t by projective normality of γ. It follows
from the discussion of the preceding paragraph that h assumes tD0 as the polar divisor and

D(m)
t,G as the zero divisor. We therefore conclude that the generic part of the complete linear

system |tD0| is exactly {Dt,G}, and thus dim(|tD0|) = 6t, or, dim(L(tD0)) = 6t+ 1.
By the Riemann-Roch theorem dim(L(tD0)) ≥ 1 + deg(tD0) − g(M), or, 6t + 1 ≥ 1 +

6td−g(M) so that g(M) ≥ 6t(d−1) for all t ∈ N. It follows that d = 1 and so ϕ is bijective.

We define ψ , g ◦ (ϕ)−1. Since k = 1 as k ≤ 3d/2, we see ψ(CP 1) is a line in CP 3.

Remark 4.1. Since genericity of hypersurfaces of degree t is a Zariski open condition
among all hypersurfaces of degree t in CP 6, they form a connected set. On the other hand,

for a generic hypersurface G = 0, the fixed part D(f)
t,G is of degree 2(k − d) and is supported

over that of F . Meanwhile, for any support point p of F , the map G 7→ ordp(G) is upper
semicontinuous, so that it stays constant among the generic hypersurfaces.

Case 2. Assume that F lies in the 2-dimensional orbit. Let γ , F (CP 1) intersects the third

orbit PSL2 · u6 at points r1, . . . , rj . Consider W , γ \ {r1, . . . , rj}. By item (2) of Remark
3.2, the restriction of PSL2 over W is a principal C∗-bundle and so it is a trivial one, since
the associated line bundle over W is trivial [21, p.229]. It follows that we obtain a lift

CP 3

CP 1 CP 6

f2

F

ψ (4.5)
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Note that b0, b1, . . . , b6 are homogeneous of bidegree (1, 5) in (a, c) and (b, d), respectively.
We assume that a, b, c, d are polynomials of an affine coordinate z.

�

Sublemma 4.2. None of a, b, c, d are identically zero as γ is nondegenerate in CP 6, from
which there induce two holomorphic maps

φ1 : CP 1 → CP 1, z 7→ [a : c],

φ2 : CP 1 → CP 1, z 7→ [b : d].

We have deg(F ) = deg(φ1)+5 deg(φ2). Moreover, if deg(F ) = 6, then (deg(φ1), deg(φ2)) =
(1, 1), and there exist B ∈ SL2 and nonzero polynomials f, g of z, such that

φ = B ·A(z) · diag{f, g},

where A : CP 1 → CP 3 is of degree 1, i.e., A is a line.

Proof. Set f , gcd(a, c) and g , gcd(b, d). Note that

(A · diag{f, g}) · u5v = A · (fg5)u5v = A · u5v,

after projectivizing. We may thus assume that gcd(a, c) = gcd(b, d) = 1. φ1 and φ2 define,
respectively, the polar divisors

Dφ1 = max{deg a,deg c} · ∞, Dφ2 = max{deg b,deg d} · ∞.

We give two claims:

Claim 1: for every p ∈ C, b0, b1, . . . , b6, given in (3.7), do not vanish simultaneously; hence
ordp F = 0.

Claim 2: ord∞(F ) = max{deg a,deg c}+ 5 max{deg b,deg d}.
Therefore, summing up the local vanishing orders gives deg(F ) = deg(φ1) + 5 deg(φ2).

Proof of Claim 1: Note that if bi(p) = 0, i = 0, 1, . . . , 6, at p ∈ C, then we have

ψ(p) =

(
a(p) 0
c(p) 0

)
or

(
0 b(p)
0 d(p)

)
.

(Since a, b, c, d have no common factors, at least one of them does not vanish.) Hence, z− p
is a common factor of b and d, or a and c, respectively, contradictory to that these two pairs
are without common factors.

Proof of Claim 2: Since bi are homogeneous of bidegree (1, 5) in (a, c) and (b, d), respectively,
we have ord∞(F ) ≤ max{deg a,deg c}+ 5 max{deg b,deg d}. For the opposite direction, we
divide it into two subcases. Multiplying a matrix from the left by interchanging the rows,
we may assume that deg(a) ≥ deg(c).

(Subcase 1) If deg(a) ≥ deg(c) and deg(b) ≥ deg(d), then

ord∞ F ≥ deg(b6) = deg(a) + 5 deg(b) = max{deg a,deg c}+ 5 max{deg b,deg d},

whence the identity.
(Subcase 2) If deg(a) ≥ deg(c) and deg(b) < deg(d), then

ord∞(F ) ≥ deg(b1) = deg(a) + 5 deg(d) = max{deg a,deg c}+ 5 max{deg b,deg d},

whence the identity.
It breaks down to two subcases for deg(ψ) = 6.

13



(Subcase 1’) If (deg(φ1),deg(φ2)) = (1, 1), then after extracting the common factors, we
have

deg(φ1) = max{deg a,deg c} = 1, deg(φ2) = max{deg b,deg d} = 1,

and we are done.
(Subcase 2’) If (deg(φ1),deg(φ2)) = (6, 0), then after extracting the common factors, we

obtain

deg(φ1) = max{deg a,deg c} = 6, deg(φ2) = max{deg b,deg d} = 0.

Multiplying a nondegenerate matrix from the left, we may assume that b = 0. This contra-
dicts that b is not identically zero. �

Thanks to this lemma, every holomorphic 2-sphere of degree 6 in V6∩G(2, 5) corresponds
to a line in CP 3, a geometric object that is considerably easier to control.

Lemma 4.2. Let ψ be a projective line in CP 3 that does not lie in Q2. Then only one of
the following two cases occurs.

(1) ψ intersects Q2 transversally in two distinct points. Then up to a Möbius transfor-
mation, there exist C ∈ SL2 and B ∈ GL(2,C) such that, up to projectivization,

ψ(z) = C

(
z 0
0 1

)
B. (4.6)

We call this case the transversal case.
(2) ψ is tangent to Q2 at a point. Then up to a Möbius transformation, there exist

C ∈ SL2 and B ∈ GL(2;C) such that, up to projectivization,

ψ(z) = C

(
1 µz
0 1

)
B, (4.7)

where µ 6= 0 is a complex number. We call this case the tangential case.

Proof. For the transversal case, choose a parametrization z of CP 1 such that ψ(0), ψ(∞) ∈
Q2, and ψ(z) = ψ(0) + zψ(∞) ∈ CP 3 \Q2 for z 6= {0,∞}. Since ψ(∞) ∈ Q2, there exists a

U0 ∈ SU(2) such that ψ(∞) = U0 ·
(
a1 b1
0 0

)
. Assume ψ(0) = U0 ·

(
a0 b0
c0 d0

)
∈ Q2. Since ψ does not

lie in Q2, we have (c0, d0) 6= (0, 0) and (a0, b0) = λ(c0, d0) for some constant λ ∈ C. Hence,

ψ(z) = U0 ·
(
λc0 + a1z λd0 + b1z

c0 d0

)
= U0 ·

(
1 λ
0 1

)
·
(
z 0
0 1

)
·
(
a1 b1
c0 d0

)
and a1d0 − b1c0 6= 0. Then (4.6) follows from setting C , U0 ·

(
1 λ
0 1

)
and B ,

(
a1 b1
c0 d0

)
.

For the tangential case, choose a parametrization z of CP 1, such that ψ(∞) ∈ Q2 is
the tangent point, and ψ(z) = ψ(0) + zψ(∞) ∈ CP 3 \ Q2 for z 6= ∞. Since ψ(∞) ∈ Q2,

there exists a U1 ∈ SU(2), such that ψ(∞) = U1 ·
(
a1 b1
0 0

)
. Assume ψ(0) = U1 ·

(
a0 b0
c0 d0

)
, where

a0d0−b0c0 6= 0. Since ψ intersects Q2 at the double point ψ(∞), we have (a1, b1) = µ(c0, d0),
for some µ 6= 0. Hence

ψ(z) = U1 ·
(
a0 + µc0z b0 + µd0z

c0 d0

)
= U1 ·

(
1 µz
0 1

)
·
(
a0 b0
c0 d0

)
,

where µ(a0d0 − b0c0) 6= 0. By setting C , U1 and B ,

(
a0 b0
c0 d0

)
, we have (4.7). �
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Corollary 4.1. Every holomorphic 2-sphere of degree 6 in the standard Fano 3-fold H3
0 can

be parametrized as one of the following.

(1) ψ(z) · p, where ψ(z) is a line in CP 3 in the form (4.6), and p = uv(u4− v4) or u5v .
(2) ψ(z) · p, where ψ(z) is a line in CP 3 in the form (4.7), and p = uv(u4− v4) or u5v .
(3) The Veronese curve, namely, the 1-dimensional orbit PSL2 · u6.

We need only consider the first two cases in the sequel.
Recall that a smooth holomorphic 2-sphere of degree 6 in G(2, 5) necessarily lives in a

codimension 3 linear section of G(2, 5). Henceforth, we call the 2-sphere generic if the 6-
plane spanned by it is generic. It follows from Theorem 3.1 and Corollary 4.1 that these
generic 2-spheres can be parameterized as follows.

Proposition 4.1. Let F be a generic holomorphic 2-sphere of degree 6 in G(2, 5). If it
is irreducible, then up to the action of U(5) and a reparametrization of CP 1, F can be
parameterized as

A · (E0, E1, . . . , E6)LZ6(z), (4.8)

where A ∈ GL(5, C) is a lower-triangular matrix, {E0, . . . , E6} is the orthonormal basis of
V6 defined in (3.3), Z6 is the Veronese 2-sphere in (2.8), and L ∈ GL(7,C) is a lower-
triangular matrix given as follows.

(1) (Transversal case) L = diag{ω0, ω1, . . . , ω6}, where

[ω0 :
√

6ω1 :
√

15ω2 :
√

20ω3 :
√

15ω4 :
√

6ω5 :ω6] ∈ PSL2 · uv(u4 − v4) t PSL2 · u5v

satisfies

ω0ω4 − 4ω1ω3 + 3ω2
2 = 0, ω0ω5 − 3ω1ω4 + 2ω2ω3 = 0, ω0ω6 − 9ω2ω4+

8ω2
3 = 0, ω2ω6 − 4ω3ω5 + 3ω2

4 = 0, ω1ω6 − 3ω2ω5 + 2ω3ω4 = 0.
(4.9)

(2) (Tangential case)

L =


1 0 0 0 0 0 0

τ1
√
6 −µ τ0 0 0 0 0 0

τ2
√
15 −µ τ1

√
10 µ2τ0 0 0 0 0

2 τ3
√
5 −µ τ2

√
30 2µ2τ1

√
3 −µ3τ0 0 0 0

τ4
√
15 −2µ τ3

√
10 6µ2τ2 −2µ3τ1

√
3 µ4τ0 0 0

τ5
√
6 −5µ τ4 2µ2τ3

√
10 −µ3τ2

√
30 µ4τ1

√
10 −µ5τ0 0

τ6 −µ τ5
√
6 µ2τ4

√
15 −2µ3τ3

√
5 µ4τ2

√
15 −µ5τ1

√
6 µ6τ0

 , (4.10)

where

[τ0 :
√

6τ1 :
√

15τ2 :
√

20τ3 :
√

15τ4 :
√

6τ5 :τ6] ∈ PSL2 · uv(u4 − v4) t PSL2 · u5v

with the same constraints (4.9), replacing ωi by τi.

Proof. Assume H3 is the generic linear section where F lives. It follows from Theorem 3.1
that there exists a G ∈ GL(5,C), such that H3 = G(H3

0). Then G−1 ◦F is a holomorphic 2-
sphere of degree 6 in H3

0. Consequently, by Corollary 4.1, G−1◦F is lifted to a projective line
ψ in CP 3, which is parameterized as in (4.6) or (4.7), according to the type of intersection
of ψ ∩Q2.

Transversal case: From (1) in Corollary 4.1, we obtain that

G−1 ◦ F = C

(
z 0
0 1

)
B · p, (4.11)
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where p = uv(u4 − v4) or u5v. Under the basis {E0, . . . , E6}, we denote the coordinates of
B · p by

[ω0 :
√

6ω1 :
√

15ω2 :
√

20ω3 :
√

15ω4 :
√

6ω5 : ω6]t ∈ PSL2 · uv(u4 − v4) ∪ PSL2 · u5v.

In particular, we derive (4.9) by (2.7) . Now, G−1 ◦ F equals

(E0, . . . , E6) ρ6(C) ρ6(

(
z 0
0 1

)
) (ω0,

√
6ω1,

√
15ω2,

√
20ω3,

√
15ω4,

√
6ω5, ω6)t

= ρ4(C) · (E0, . . . , E6) ρ6(

(
z 0
0 1

)
) (ω0,

√
6ω1,

√
15ω2,

√
20ω3,

√
15ω4,

√
6ω5, ω6)t

= ρ4(C) · (E0, . . . , E6) diag{ω0, . . . , ω6}Z6(z).

Note that we have used Lemma 3.1 at the second equality. It follows from the QR-
decomposition that Gρ4(C) = U A, where U ∈ U(5) and A ∈ GL(5) is a lower-triangular
matrix. As a result,

U−1 ◦ F = A · (E0, . . . , E6) diag{ω0, . . . , ω6}Z6(z).

Tangential case: By (2) in Corollary 4.1, it yields that

G−1 ◦ F = C

(
1 µz
0 1

)
B · p, (4.12)

where p = uv(u4 − v4) or u5v. Under the basis {E0, . . . , E6}, we denote the coordinates of
B · p by

[τ0 :
√

6τ1 :
√

15τ2 :
√

20τ3 :
√

15τ4 :
√

6τ5 : τ6]
t.

Similarly to the transversal case, G−1 ◦ F equals

(E0, . . . , E6) ρ
6(C) ρ6(

(
1 µz
0 1

)
) (τ0,

√
6τ1,
√

15τ2,
√

20τ3,
√

15τ4,
√

6τ5, τ6)
t

= ρ4(C) · (E0, . . . , E6)LZ6(z),

where L is the lower triangular matrix prescribed in (4.10). The conclusion follows from
using the QR-decomposition to Gρ4(C). �

Holomorphicity imposes strong restrictions on ramified points.

Corollary 4.2. Let F be a generic holomorphic 2-sphere of degree 6 in G(2, 5). If F is ir-
reducible, then it has at most two ramified points (without counting multiplicity). Moreover,

(1) if F is parametrized in the transversal case, then F has two distinct ramified points,
and,

(2) if F is parametrized in the tangential case, then F has only one ramified point.

Proof. Though it is possible to give a conceptual proof for this fact in projective geometry,
we choose to adopt a computational approach to illustrate the representation aspect of the
undertaking for the sake of its brevity.

Without losing generality, we may assume A = I5 in (4.8) by projective equivalence.
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Case 1 (Transversal case): By item (1) in Proposition 4.1 and (3.3), one can show that
∂F/∂z ∧ ∂F/∂z(z) equals

− 24
√

6f0z
2e0 ∧ e1 ∧ e2 ∧ e3 − 24

√
6f1z

3e0 ∧ e1 ∧ e2 ∧ e4 − 144f2z
4e0∧

e1 ∧ e3 ∧ e4 + 12
√

6f3z
5e0 ∧ e2 ∧ e3 ∧ e4 + 24

√
6f4z

6e1 ∧ e2 ∧ e3 ∧ e4,
(4.13)

Observe that at least one of fi does not vanish by the irreducibility of F (f0, · · · , f4
are quadratic in ω0, · · · , ω6). As a result, (4.13) implies that only z = 0 or ∞ (by taking
z = 1/w in the latter case) are ramified points of F . Note that {F (0), F (∞)} is exactly
ImF ∩ PSL2 · u6.

Case 2 (Tangential case): By item (2) in Proposition 4.1 and (3.3), ∂F/∂z ∧ ∂F/∂z(z)
equals

− 24
√

6µ2g0e0 ∧ e1 ∧ e2 ∧ e3 + 24
√

6µ2(2µg0z − g1)e0 ∧ e1 ∧ e2 ∧ e4
− 144µ2(µ2g0z

2 − µg1z + g2)e0 ∧ e1 ∧ e3 ∧ e4

+ 48
√

6µ2(µ3g0z
3 − 3µ2g1

2
z2 + 3µg2z +

g3
4

)e0 ∧ e2 ∧ e3 ∧ e4

− 24
√

6µ2(µ4g0z
4 − 2µ3g1z

3 + 6µ2g2z
2 + µg3z − g4)e1 ∧ e2 ∧ e3 ∧ e4.

(4.14)

Note that µ 6= 0 and g0, · · · , g4 are quadratic in τ0, · · · , τ6. Again, one of gi does not vanish
to avoid reducibility. Consequently, (4.14) implies that F does not have ramified points in
the affine plane C, and so ∞ (by taking z = 1/w) is the unique ramified point. Note that
F (∞) is the unique point of intersection of ImF ∩ PSL2 · u6. �

5. Necessity of generic holomorphic 2-spheres to be of constant curvature

Exploring parameterizations given in the preceding section, we will show in this section
that a generic constantly curved holomorphic 2-sphere of degree 6 can only live in the Fano
3-folds H3 that differ from the standard H3

0 by a diagonal transformation in GL(5,C5), up
to U(5)-equivalence.

Definition 5.1. By the diagonal family we mean constantly curved holomorphic 2-spheres
of degree 6 parametrized as in Case (1) of Proposition 4.1, where A , diag(a00, · · · , a44) is
a diagonal matrix and the columns of

A · (E0, E1, . . . , E6) diag{ω0, ω1, . . . , ω6} (5.1)

are mutually orthogonal and all of unit length.

Given a lower-triangular matrix A ∈ GL(5;C), by the definition of ∧2-action it follows

from (3.3) that C , A · (E0, E1, E2, E3, E4, E5, E6) is of the form

C =



C00 0 0 0 0 0 0
C10 C11 0 0 0 0 0
C20 C21 C22 0 0 0 0
C30 C31 C32 C33 0 0 0
C40 C41 C42 0 0 0 0
C50 C51 C52 C53 0 0 0
C60 C61 C62 C63 C64 0 0
C70 C71 C72 C73 C74 0 0
C80 C81 C82 C83 C84 C85 0
C90 C91 C92 C93 C94 C95 C96

 , (5.2)

which is a 10× 7 matrix obtained by column vectors A ·Ek written relative to the standard
basis ei ∧ ej , 0 ≤ i < j ≤ 4, in the lexicographic order. We point out that Cij are quadratic
in terms of the entries of A.

The following two lemmas are important.
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Lemma 5.1. Let G be a 10 × 7 matrix of rank 7 in the form as on the right-hand side of
(5.2) with G33G53G64G74 6= 0, and the column vectors of G are mutually orthogonal. If the

holomorphic 2-sphere γ(z) , GZ6(z) lies in G(2, 5) and is generic, then G is in the form

G00 0 0 0 0 0 0
0 G11 0 0 0 0 0
0 0 G22 0 0 0 0
0 0 0 G33 0 0 0
0 0 G42 0 0 0 0
0 0 0 G53 0 0 0
0 0 0 0 G64 0 0
0 0 0 0 G74 0 0
0 0 0 0 0 G85 0
0 0 0 0 0 0 G96

 , (5.3)

where γ is ramified at z = 0 and z =∞.

Proof. If (5.3) holds, then the last statement follows from γ′(0) = e0 ∧ e2 ∈ G(2, 5) and
γ′(∞) = e2 ∧ e4 ∈ G(2, 5). Hence, we need only prove (5.3) in the following. Since the first
five columns of G are perpendicular to the last two, we have

γ(z) =



G00 0 0 0 0 0 0
G10 G11 0 0 0 0 0
G20 G21 G22 0 0 0 0
G30 G31 G32 G33 0 0 0
G40 G41 G42 0 0 0 0
G50 G51 G52 G53 0 0 0
G60 G61 G62 G63 G64 0 0
G70 G71 G72 G73 G74 0 0
0 0 0 0 0 G85 0
0 0 0 0 0 0 G96




1√
6z√

15z2

2
√
5z3√

15z4√
6z5

z6


We denote by {γj | j = 0, . . . , 9} the coordinates of γ. Then it is easy to see

deg(γ0) = 0, deg(γ1) ≤ 1, deg(γ2) ≤ 2, deg(γ3) ≤ 3, deg(γ4) ≤ 2,

deg(γ5) ≤ 3, deg(γ6) ≤ 4, deg(γ7) ≤ 4, deg(γ8) = 5, deg(γ9) = 6.

It follows from that γ lies in G(2, 5) that

γ2γ4 − γ1γ5 + γ0γ7 = 0, (5.4)

γ3γ4 − γ1γ6 + γ0γ8 = 0, (5.5)

γ3γ5 − γ2γ6 + γ0γ9 = 0, (5.6)

γ3γ7 − γ2γ8 + γ1γ9 = 0, (5.7)

γ6γ7 − γ5γ8 + γ4γ9 = 0. (5.8)

Moreover, γi 6= 0, i = 0 . . . , 9, since γ lies in a generic linear section. Meanwhile, from

the orthogonality of {Gj | j = 0, . . . , 6}, we obtain that |Gj |2
√(

6
j

)
zj = 〈γ,Gj〉 =

∑9
k=0Gkjγk,

so that

G64γ6 +G74γ7 = |G4|2
√

15z4, (5.9)

G33γ3 +G53γ5 +G63γ6 +G73γ7 = |G3|2
√

20z3. (5.10)

In the following, we will use the assumption that G33G53G64G74 6= 0. Observe that
γ8 = G85z

5, γ9 = G96z
6. As a polynomial of z, we denote by m(γj) the order of γj at z = 0.

Combining (5.9) and G64G74 6= 0, and using deg(γ6) = deg(γ7) = 4, it yields that 0 ≤
m(γ6) = m(γ7) ≤ 4. Meanwhile (5.8) gives that z5|γ6γ7, which implies 5 ≤ m(γ6) +m(γ7).
It follows that m(γ6) = m(γ7) ≥ 3. Moreover, we obtain z5 | γ3γ7 in accord with (5.7).

Claim 1. γ6 = G64z
4, γ7 = G74z

4.
18



Otherwise, we assume m(γ7) = 3. Then 2 ≤ m(γ3) ≤ 3 and m(γ6) = 3. Using (5.10),
we have m(γ5) ≥ 2, which implies z4 | (γ3γ5 + γ0γ9). It follows from (5.6) that z4 | γ2γ6.
As a result, m(γ2) ≥ 1, and z6 | (γ2γ8 − γ1γ9). Next, (5.7) yields that z6 | γ3γ7, and then
m(γ3) = 3. Using (5.10) again, we obtain m(γ5) ≥ 3. Coupled with (5.6), z6 | γ2γ6 can be
deduced. Consequently, m(γ2) ≥ 3, which contradicts deg(γ2) ≤ 2. Hence the claim follows
from the degrees of γ6 and γ7.

Now that we have z4 | (γ1γ6−γ0γ8), it follows from (5.5) that z4 | γ3γ4. Since deg(γ4) = 2,
we obtain m(γ3) ≥ 2.

Claim 2. γ3 = G33z
3.

Otherwise, we assume m(γ3) = 2. Then m(γ4) = 2. Hence z8 | (γ4γ9 + γ6γ7), and
z8 | γ5γ8, from which we can derive that m(γ5) ≥ 3. Using (5.10) again, there yields that
m(γ3) ≥ 3 (by G33 6= 0), which contradicts the assumption. Therefore m(γ3) = 3 and the
Claim 2 follows from deg(γ3) = 3.

Now, γ5 = G53z
3 follows from (5.10) and deg(γ5) = 3.

Using (5.8), we obtain z8 | γ4γ9. Hence γ4 = G42z
2 by deg(γ4) = 2.

From (5.6), we have z6 | γ2γ6. Therefore, γ2 = G22z
2 due to that deg(γ2) = 2.

Lastly, it follows from (5.7) that z7 | γ1γ9. So γ1 = G11z, as deg(γ1) = 1. �

Corollary 5.1. A lower-triangular matrix A ∈ GL(5,C) is diagonal if and only if the
columns of (5.2) are perpendicular to each other.

Proof. The essence of the proof is to show that G , A · (E0, E1, . . . , E6) satisfies the as-

sumptions in Lemma 5.1. Indeed, consider the curve γ , G · Z6(z), which is projectively
equivalent to the Veronese curve PSL2 · u6 so that it certainly lies in G(2, 5) as well. Note
that G33G53G64G74 6= 0, because it can be presented as the product of the diagonal elements
of the lower-triangular A. Therefore, Proposition 5.1 applies and G is in the form (5.3).

It follows from the first two columns of G that

Ae0 ∧Ae1 ≡ 0 mod (e0 ∧ e1), Ae0 ∧Ae2 ≡ 0 mod (e0 ∧ e2).
Hence, Ae0, Ae1 ∈ span{e0, e1}, and Ae0, Ae2 ∈ span{e0, e2}. As a result, Ae0 ≡ 0 mod e0.
Due to that A is lower-triangular, we obtain Ae1 ≡ 0 mod e1 and Ae2 ≡ 0 mod e2. A
similar observation on the 5th column of G gives that Ae2 ∧Ae3 ≡ 0 mod (e2 ∧ e3), which
implies Ae3 ≡ 0 mod e3. In conclusion, we derive that A is diagonal. �

Using Lemma 5.1 and Corollary 5.1, we can now prove the claim given at the beginning
of this section.

Theorem 5.1. Let ϕ : CP 1 → G(2, 5) be a generic constantly curved holomorphic 2-sphere
of degree 6. Then up to U(5), it is in the diagonal family.

Proof. If ϕ is reducible, then it follows from subsection 2.3 that ϕ is precisely the standard
Veronese curve (1.1), which clearly belongs to the diagonal family. Therefore we assume ϕ
is irreducible in the following.

As shown in Proposition 4.1, ϕ can be transformed from a curve η in the standard Fano
3-fold H3

0 by a lower-triangular matrix A ∈ GL(5, C), namely,

ϕ = A · (E0, E1, E2, E3, E4, E5, E6) LZ6(z), (5.11)

where L is a 7 × 7 lower-triangular matrix. Moreover, from the proof of Corollary 4.2, we
have z =∞ is a ramified point (denoted by p in the sequel) of ϕ. It follows from Lemma 2.1
that, after performing a unitary Möbius reparametrization, there is an affine coordinate z̃,

19



such that z̃(p) =∞ and ϕ = GZ6(z̃), where the columns of G10×7 are mutually orthogonal
of unit length. Note that z̃ differs from z by a Möbius transformation, which, without losing
generality, can be assumed to be z̃ = z−µ. It is easily checked that Z6(z) = L1Z6(z̃), where

L1 =


1 0 0 0 0 0 0√
6 µ 0 0 0 0 0√
15 µ

√
10 µ2 0 0 0 0

2
√
5 µ
√
30 2µ2

√
3 µ3 0 0 0√

15 2µ
√
10 6µ2 2µ3

√
3 µ4 0 0√

6 5µ 2µ2
√
10 µ3

√
30 µ4

√
10 µ5 0

1 µ
√
6 µ2

√
15 2µ3

√
5 µ4
√
15 µ5

√
6 µ6


It follows that

G = A · (E0, E1, E2, E3, E4, E5, E6) LL1,

which is in the form of (5.2). Moreover, it is easily seen that the entries of G satisfy
G33G53G64G74 6= 0. Therefore, Lemma 5.1 can be applied to deduce that ϕ is ramified at
z̃ = 0 and z̃ =∞, which correspond to z = µ and z =∞. Combining this with Corollary 4.2,
we obtain that the parameterization (5.11) of ϕ belongs to the Transversal Case. It follows
from the proof of Corollary 4.2 that z = 0 is also a ramified point in this case. So, we have
µ = 0, namely, L1 = I7. Then the conclusion follows from L = diag{ω0, ω1, . . . , ω6} and
Corollary 5.1. �

6. Existence and uniqueness results for the diagonal family.

It follows from Theorem 5.1 that to classify generic constantly curved holomorphic 2-
spheres in G(2, 5), we need only consider those in the diagonal family, which are determined
by diagonal matrices A ∈ GL(5,C) and complex numbers {ω0, ω1, . . . , ω6} satisfying (4.9).

In this section, we will pin down the class of diagonal matrices A ∈ GL(5,C) that warrants
the existence of constantly curved holomorphic 2-spheres of degree 6, and meanwhile find
the number of such 2-spheres in each of these Fano 3-folds A(H3

0).
Assume ϕ is a constantly curved holomorphic 2-sphere in the diagonal family given by

the data A = diag{a00, a11, · · · , a44} and {ω0, ω1, · · · , ω6} satisfying (4.9). It follows from
Definition 5.1 that

ϕ(z) = a00a11ω0 e0 ∧ e1 +
√

6a00a22 ω1 z e0 ∧ e2 + 3a00a33 ω2 z
2 e0 ∧ e3

+
√

6a11a22 ω2 z
2 e1 ∧ e2 + 2a00a44 ω3 z

3 e0 ∧ e4 + 4a11a33 ω3 z
3 e1 ∧ e3

+ 3a11a44 ω4 z
4 e1 ∧ e4 +

√
6a22a33 ω4 z

4 e2 ∧ e3 +
√

6a22a44 ω5 z
5 e2 ∧ e4

+ a33a44 ω6 z
6 e3 ∧ e4,

(6.1)

and
(9a200a

2
33 + 6a211a

2
22)|ω2|2

15
=

(a200a
2
44 + 4a211a

2
33)|ω3|2

5
= a200a

2
11|ω0|2 =

(9a211a
2
44 + 6a222a

2
33)|ω4|2

15
= a200a

2
22|ω1|2 = a222a

2
44|ω5|2 = a233a

2
44|ω6|2 = 1.

(6.2)

Remark 6.1. We point out that ϕ has the following standard parameterization in the sense
of section 2.2. (

ϕ1(z)
ϕ2(z)

)
=

(
1 0 −

√
6ω2a22
ω0a00

z2 −4ω3a33
ω0a00

z3 −3ω4a44
ω0a00

z4

0 1
√

6ω1a22
ω0a11

z 3ω2a33
ω0a11

z2 2ω3a44
ω0a11

z3

)
. (6.3)
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In Jiao and Peng’s approach, they considered collectively the undertermined variables

α2 , −
√

6(ω2a22)/(ω0a00), β3 , −4(ω3a33)/(ω0a00), ϕ4 , −3(ω4a44)/(ω0a00),

u1 ,
√

6(ω1a22)/(ω0a11), v2 , 3(ω2a33)/(ω0a11), z3 , 2(ω3a44)/(ω0a11).

Then the constant curvature condition (6.2) is equivalent to

|u1|2 = 6, |v2|2 + |α2|2 = 15, |z3|2 + |β3|2 = 20

|ϕ4|2 + |α2v2 − β3u1|2 = 15, |α2z3 − ϕ4u1|2 = 6, |β3z3 − ϕ4v2|2 = 1.
(6.4)

The standard Veronese curve in (1.1) corresponds to the solution

(α2, β3, ϕ4, u1, v2, z3) = (−
√

6,−4,−3,
√

6, 3, 2).

Branching out, observe that after fixing (α2, ϕ4, u1, v2) = (−
√

6,−3,
√

6, 3), we have that the system
of equations (6.4) reduces to

|z3|2 + |β3|2 = 20, |β3 + 3|2 = 1, |z3 − 3|2 = 1, |β3z3 + 9|2 = 1.

Set
β3 , −3 + e

√
−1θ, z3 , 3 + e

√
−1ϕ. (6.5)

From the first equation we derive cos θ = cosϕ; and so ϕ = ±θ. If ϕ = −θ, then the last
equation above gives θ = 0 or π. Therefore without losing generality, we may set ϕ = θ in
any event. Consequently, we obtain a 1-parameter family of solutions(

1 0 −
√

6z2 (−3 + e
√
−1θ)z3 −3z4

0 1
√

6z 3z2 (3 + e
√
−1θ)z3

)
, (6.6)

hitherto unknown in the literature, to the authors’ knowledge.
Though the simple perturbation (6.5) generates the explicit 1-parameter family (6.6), in

general, however, without further geometric clue it is a difficult task to completely classify the
system (6.4). As our analysis has revealed up to now, the nature of the classification lies in
that one must perturb in certain Fano 3-folds dictated by (6.1) to achieve the classification.
In the following, we will present an algebro-geometric approach to describe all solutions to
the diagonal system (6.1).

Set
ωi ,

√
tie
√
−1θi , i = 0, . . . , 6.

It follows from the condition of constant curvature (6.2) that

t0 = 1/a211, t1 = 1/a222, t2 = 15/(9a200a
2
33 + 6a211a

2
22), t6 = 1/(a233a

2
44),

t3 = 5/(a200a
2
44 + 4a211a

2
33), t4 = 15/(9a211a

2
44 + 6a222a

2
33), t5 = 1/(a222a

2
44).

(6.7)

Remark 6.2. For the detailed analysis to follow on the length constraints (6.2), without
loss of generality through scaling, we may assume that a00 = 1 and ajj ∈ R+, 1 ≤ j ≤ 4
(by a diagonal unitary transformation in U(5)). Moreover, it follows from Lemma 3.9 that
the transformation ρ4(diag{λ, 1}) = diag{1, λ, λ2, λ3, λ4} preserves H3

0 for any λ ∈ C∗.
As a consequence, after multiplying by an appropriate real λ, we may furthermore assume
a22 = a33. This process is equivalent to applying a Möbius reparametrization to the 2-sphere
ϕ by z 7→ λz.

Similarly, we assume further that θ0 = θ6 = 0, which follows from dehomogenizing to
eliminate θ0 and introducing a rotational reparametrization of the 2-sphere ϕ to eliminate
θ6.
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Combining (6.7) with the above normalization, we have

t2 =
5t0t1

(3t0 + 2)
, t3 =

5t0t1t6
(t0t21 + 4t6)

, t4 =
5t0t

2
1t6

(3t31 + 2t0t6)
, t5 = t6. (6.8)

Moreover, it follows from (4.9) that the angles θi of ωi satisfy
√
t0t4 = 4

√
t1t3e

√
−1(θ1+θ3−θ4) − 3t2e

√
−1(2θ2−θ4),

√
t0t5 = 3

√
t1t4e

√
−1(θ1+θ4−θ5) − 2

√
t2t3e

√
−1(θ2+θ3−θ5),

√
t0t6 = 9

√
t2t4e

√
−1(θ2+θ4) − 8t3e

√
−12θ3 .

(6.9)

Remark 6.3. Conversely, given a solution {t0, t1 · · · , t6} ⊂ R+ and { θ1 · · · , θ5} ⊂ R to

(6.8) and (6.9), by solving aii from ti and defining ωi = tie
√
−1θi, we can obtain a constantly

curved holomorphic 2-sphere of degree 6 in G(2, 5) parameterized as in (6.1).

We point out that the three equations in (6.9) are not independent by the following
Lemma 6.1. In fact, set

x1 , e
√
−1(θ1+θ3−θ4), y1 , e

√
−1(2θ2−θ4), x2 , e

√
−1(θ1+θ4−θ5),

y2 , e
√
−1(θ2+θ3−θ5), x3 , e

√
−1(θ2+θ4), y3 , e

√
−1(2θ3).

(6.10)

Taking norm squared to both sides of (6.9), we see from the realness of t0, · · · , t6 that

h1 , v − uw = 0, h2 , u
2 −Xu+ 1 = 0, h3 , v

2 − Y v + 1 = 0,

h4 , w
2 − Zw + 1 = 0,

(6.11)

where,
u = x1/y1, v = x2/y2, w = x3/y3,

X = (9t22 + 16t1t3 − t0t4)/(12t2
√
t1t3),

Y = (4t2t3 + 9t1t4 − t0t5)/(6
√
t2t3
√
t1t4),

Z = (64t23 + 81t2t4 − t0t6)/(72t3
√
t2t4).

(6.12)

We first solve (6.11) by viewing {X,Y, Z} as indeterminates. Define

H , −XY Z +X2 + Y 2 + Z2 − 4. (6.13)

Lemma 6.1. If {v, u, w,X, Y, Z} solves the system (6.11), then H = 0. Conversely, given
any complex solution (X0, Y0, Z0) to H = 0, there always exits (v0, u0, w0) ∈ C3, such that
(v0, u0, w0, X0, Y0, Z0) solves this system.

Moreover, when the solution X0, Y, Z0 to H = 0 are real, |v0| = |u0| = |w0| = 1 if and only
if X0, Y0, Z0 ∈ [−2, 2], in which case there are at most two solutions, namely, (v0, u0, w0)
and its complex conjugate (v0, u0, w0), which are distinct unless X2

0 = Y 2
0 = Z2

0 = 4 and
X0Y0Z0 = 8.

Proof. Assume {v, u, w} solves the last three equations in (6.11), respectively. It follows that
{1/v, 1/u, 1/w} also solves them, respectively, with X = u+1/u, Y = v+1/v, Z = w+1/w.
By a straightforward calculation, we have

H = (uvw − 1)(u− vw)(v − uw)(w − uv)/(u2v2w2),

from which the first statement follows by the first equation of (6.11).
To prove the second statement, the realness of X0, Y0, Z0 dictates that |v0| = |u0| = |w0| =

1 if and only if the last three equations in (6.11) all have a pair of conjugate solutions, which
implies that their discriminants X2

0 − 4, Y 2
0 − 4, Z2

0 − 4 are no more than 0.
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Furthermore, given (X0, Y0, Z0) ∈ [−2, 2]3 that solves (6.13), assume {(vi, ui, wi)|i = 0, 1}
are two pairs of solutions of the system (6.11). It follows that

v1 = v0 or v0, u1 = u0 or u0, w1 = w0 or w0.

By the pigeonhole principle, we may assume u1 = u0, w1 = w0 without loss of generality.
Then it follows from the first equation h1 in (6.11) that v1 = u1w1 = v0. Therefore, we
deduce that these two solutions either coincide or differ by a complex conjugation, where
the former case occurs when u0, v0, w0 are all real to satisfy X0 = Y0 = Z0 = ±2 with
X0Y0Z0 = 8 to respect H = 0. �

We now analyse the diagonal family in terms of (t0, t1, t6) ∈ (R+)3. By substituting (6.8)
and (6.12) into the formula of H in (6.13) and ignoring the nonzero denominator of the
fraction and the nonzero factors, we obtain a hypersurface in (R+)3 defined by F (t0, t1, t6) =
0, where

F (t0, t1, t6) , 168750000 H t
6
0t

11
1 t

4
6/(t2t3t

2
4)

= 9 t1
6
t6

3
t0

9
+
(
6912 t1

9
t6

2 − 366 t1
6
t6

3 − 10260 t1
4
t6

4
)
t0

8

+
(
435888 t1

2
t6

5
+ 299592 t1

4
t6

4
+ (−397332 t17

+ 2560 t1
6
)t6

3 − 58329 t1
9
t6

2
+ 63504 t1

12
t6
)
t0

7

+
(
65088 t6

6
+ 225504 t1

2
t6

5
+ (31968 t1

5
+ 533856 t1

4
)t6

4
+ (−451260 t17 − 128 t1

6
)t6

3
+

(−1296 t110 − 44868 t1
9
)t6

2
+ 16416 t1

12
t6
)
t0

6

+
(
78720 t6

6
+ (−1366848 t13

+ 154368 t1
2
)t6

5
+ (−2480688 t15

+ 203712 t1
4
)t6

4
+ (2125440 t1

8
+

541536 t1
7
)t6

3
+ (−501336 t110

+ 2560 t1
9
)t6

2
+ (−190512 t113 − 58329 t1

12
)t6 + 63504 t1

15
)
t0

5

+
(
22016 t6

6
+ (15552 t1

3
+ 99840 t1

2
)t6

5
+ (145152 t1

6 − 2192448 t1
5
)t6

4
+ (1076544 t1

8
+

533856 t1
7
)t6

3
+ (31104 t1

11 − 451260 t1
10

)t6
2
+ (−1296 t113 − 366 t1

12
)t6 + 6912 t1

15
)
t0

4

+
(
− 1024 t6

6 − 645120 t1
3
t6

5
+ (5774976 t1

6
+ 154368 t1

5
)t6

4
+ (−3048192 t19 − 2480688 t1

8
)t6

3
+

(2125440 t1
11

+ 299592 t1
10

)t6
2 − 397332 t1

13
t6 + 9 t1

15
)
t0

3

+
(
22016 t1

3
t6

5
+ 15552 t1

6
t6

4
+ (145152 t1

9
+ 225504 t1

8
)t6

3
+ 31968 t1

11
t6

2 − 10260 t1
13
t6
)
t0

2

+
(
435888 t1

11
t6

2 − 1366848 t1
9
t6

3
+ 78720 t1

6
t6

4
)
t0 + 65088 t1

9
t6

3
= 0,

(6.14)

with the three necessary discriminant constraints

(9t22 + 16t1t3 − t0t4)2 − 576t1t
2
2t3 ≤ 0, (4t2t3 + 9t1t4 − t0t5)2−

144t1t2t3t4 ≤ 0, (64t23 + 81t2t4 − t0t6)2 − 20736t2t
2
3t4 ≤ 0,

(6.15)

due to the assumptions made on X,Y, Z ∈ [−2, 2] in Lemma 6.1:

Remark 6.4. The three constraints |u| = |v| = |w| = 1 are not independent by the first
equation in (6.11). Any two of the three inequalities in (6.15) imply the third. Moreover,
Z ∈ (−2, 2) implies X,Y ∈ (−2, 2) since for a fixed Z ∈ (−2, 2), H = 0 in (6.13) defines an
ellipse good for the conclusion.

In conclusion, we obtain the following existence and uniqueness theorem.

Theorem 6.1. Given a diagonal matrix A = diag{1, a11, a22, a22, a44}, normalized as in
Remark 6.2, there exist constantly curved holomorphic 2-spheres of degree 6 in A(H3

0) if and
only if {t0, t1, t6} given by (6.8) satisfy the algebraic equation (6.14) and inequalities (6.15).

Moreover, in A(H3
0), there exist at most two constantly curved holomorphic 2-spheres of

degree 6; they are distinct except when {X,Y, Z} defined in (6.12) satisfies X2 = Y 2 = Z2 =
4 and XY Z = 8.
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Proof. The necessary part has been verified in the preceding discussion.
Conversely, assume that {t0, t1, t6} satisfy the algebraic equation (6.14) and inequali-

ties (6.15). Then we obtain at least a triple (v0, u0, w0) of solution of system (6.11) ac-
cording to Lemma 6.1. By substituting it into system (6.9), we obtain a unique solution
{(xi, yi)|1 ≤ i ≤ 3} by the following recipe: The first equation of (6.9) gives that

y1 =
√
t0t4/(4

√
t1t3 u0 − 3t2), x1 = y1u0. (6.16)

It follows from |u0| = 1 that both x1 and y1 are of unit length. A similar discussion applies
to (x2, y2) and (x3, y3).

Apply the logarithmic function on both sides of (6.10). Since the ranks of the coefficient
matrix of of (θ1, . . . , θ5) and its enlarged version with the augmented (log(x1), · · · , log(y3))
are both equal to 5, we can solve θj from the arguments of the points {(xi, yi)|1 ≤ i ≤ 3}
on the plane. Substituting all the data into (6.1) gives a constantly curved holomorphic
2-sphere ϕ in A(H3

0) (see Remark 6.3).
Lastly, we remark that ϕ is uniquely determined by (v0, u0, w0), owing to that the only

difference between any two pairs of solutions {θj |1 ≤ j ≤ 5} and {θ̃j |1 ≤ j ≤ 5} of

(6.10) is θj = θ̃j + 2kjπ/6, 1 ≤ j ≤ 5, for some 0 ≤ k ≤ 5. It is straightforward to
show that the corresponding two curves share the same image by introducing a rotational

reparametrization z̃ = ze
√
−12kπ/6.

In conclusion, any solution (v, u, w) of system (6.11) determines uniquely a constantly
curved 2-sphere. Then the second statement follows from Lemma 6.1. �

Corollary 6.1. The only constantly curved holomorphic 2-sphere of degree 6 in the standard
Fano 3-fold H3

0 = V6 ∩G(2, 5) is the standard Veronese curve PSL2 · u6.

Proof. For the standard Fano 3-fold H3
0, the associated {t0, t1, t6} are all equal to 1. There-

fore the corresponding X = Y = Z = 2 by (6.12). �

Remark 6.5. In addition to the standard Fano 3-fold H3
0, let us take the diagonal A =

diag{1, 1, 4, 4, 16}, there exists a unique constantly curved holomorphic 2-sphere of degree 6
that lies in A(H3

0) given by (
1 0 −

√
6z2 −2z3 −3z4

0 1
√

6z 3z2 4z3

)
,

since the associated X = Y = Z = 2. It turns out that among Fano 3-folds H3 in G(2, 5),
only three (up to unitary congruence) contain a unique constantly curved holomorphic 2-
sphere of degree 6; the last one will be given in Example 4.

7. The moduli space and new examples

Before describing the moduli space of the diagonal family, we first consider the semialge-
braic set S ⊆ (R+)3 determined by the algebraic equation (6.14) and the three inequalities
(6.15).

Proposition 7.1. The semialgebraic set S is 2-dimensional and equipped with an involution

σ : S → S, t = (t0, t1, t6) 7→ T = (T0, T1, T6) = (g t0, g t1, g
3 t6), (7.1)

where g(t0, t1, t6) , t31/(t
2
0t6).
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Proof. It is easy to show that σ is an involution of (R+)3 restricted to S; consequently, we
need only verify that σ(S) ⊆ S.

Assume that t = (t0, t1, t6) ∈ S, i.e., that t satisfies

F (t) = 0, and X(t), Y (t), Z(t) ∈ [−2, 2].

A direct computation yields that

F (T ) = g21F (t) = 0, Z(T ) = Z(t) ∈ [−2, 2].

Note that the last equation of (4.9) gives
√
t1t6 = 3

√
t2t5e

√
−1(θ2+θ5−θ1) − 2

√
t3t4e

√
−1(θ3+θ4−θ1).

Set q = e
√
−1(θ2+θ5−θ3−θ4). Then a similar argument to that deriving (6.11) leads to

q2 −Qq + 1 = 0, where

Q(t) , (−t1t6 + 9t2t5 + 4t3t4)/(6
√
t2t3t4t5).

Since |q| = 1, it forces Q(t) ∈ [−2, 2]. It is straightforward to show that Y (T ) = Q(t) ∈
[−2, 2]. Therefore, combining Remark 6.4, we obtain that the norm of X(T ) is also less
than or equal to 2. This completes the proof that T = σ(t) lies in S.

We are left with showing that the real dimension of the semialgebraic set S is 2. At the
generic point p0 = (1, 12 ,

1
8) ∈ S (for the choice of p0, see Example 1 below for details). A

calculation gives

∇F (p0) =
(
∂F/∂t0, ∂F/∂t1, ∂F/∂t6

)
(p0) = (0,−13125/256, 4375/64) 6= 0.

Owing to the implicit function theorem, near p0, S is locally a graph of t0 and t1; hence, its
real dimension is 2. �

Remark 7.1. We point out that the involution σ comes from the reciprocal transformation
of CP 1 (see the proof of the following Theorem).

Now, we are in a position to present our main theorem. Denote by M the moduli
space of generic constantly curved holomorphic 2-spheres of degree 6 in G(2, 5), modulo,
extrinsically, the ambient unitary U(5)-equivalence, and intrinsically, the internal Möbius
reparametrization.

Theorem 7.1. M = S/Z2, so that it is a 2-dimensional semialgebraic set.

Proof. Our first goal is to show that a holomorphic 2-sphere of the diagonal family is also
determined by its coefficients of zk, k = 2, 3, 4 in (6.1). Consider the quotients of them
respectively to define a map

τ : S → (R+)3, (t0, t1, t6) 7→ (A,B,C) , (
a00a33
a11a22

,
a00a44
a11a33

,
a11a44
a22a33

). (7.2)

It follows from (6.7) that (A,B,C) = (
√
t0,
√

t0
t6
t1,
√

t1
t0t6

t1). It is straightforward to

show that t0 = A2, t1 = A4C2/B2, t6 = A10C4/B6; therefore τ is injective.
The next step is to describe our moduli space. Let ϕ1(z) and ϕ2(z̃) be two holomorphic 2-

spheres of the diagonal family corresponding to t = (t0, t1, t6) and t̃ = (t̃0, t̃1, t̃6), respectively.
If there exists a U ∈ U(5) such that the image of U · ϕ1 agrees with that of ϕ2, then U
induces a Möbius transformation z̃ = f(z) on CP 1. Since the ramified points of ϕ1 and ϕ2

are both {0,∞} by Lemma 5.1, this set is invariant under ϕ. Hence z̃ = µz or µ
z , where
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µ ∈ C∗. Our aim is to establish that t̃ = t or t̃ = σ(t), which suffices to complete the proof.
We divide the argument into two cases.

Case (1): Suppose that z̃ = µz. Comparing the first two and last two terms of ϕ1 and
ϕ2, we obtain that (see (6.1))

U · e0 ∧ U · e1 ≡ 0 mod (e0, e1), U · e0 ∧ U · e2 ≡ 0 mod (e0, e2),

U · e2 ∧ U · e4 ≡ 0 mod (e2, e4), U · e3 ∧ U · e4 ≡ 0 mod (e3, e4).

Hence, U = diag{u00, . . . , u44} is diagonal as U is unitary. As a result, they share the same
quotients in (7.2), i.e., τ(t) = τ(t̃), so that t = t̃ by the injectivity of τ .

Case (2): Suppose that z̃ = µ
z . Following a similar argument as in Case (1), we see

that U is anti-diagonal. Consequently, the quotients in (7.2) satisfy A(t̃) = C(t), B(t̃) =
B(t), C(t̃) = A(t). By the exposition below (7.2), it is easy to show that t̃ = σ(t).

Now, the conclusion follows from Theorem 5.1. �

The end of this section is devoted to the construction of several interesting individual as
well as 1-parameter families of examples.

Recall the involution σ : S → S and its invariant subset S1 defined by setting g = 1, so
that 1 = g = t31/(t

2
0 t6). It is a piecewise smooth simple closed curve. Indeed, substitute

t6 = t31/t
2
0 into (6.14) and ignore the non-zero denominator and the non-zero factors. The

level set S1 is the semialgebraic set defined by the three inequalities in (6.15) and(
441 t80 − 42 t70 + t60 − 72 t50t1 − 5136 t40t1 − 1592 t30t1 + 7056 t20t

2
1 − 672 t0t

2
1 + 16 t21

)
·

(t0 − 1)
(
2 t30 − 3 t1t0 + t1

)
= 0.

In the t0t1-coordinate plane, S1 is plotted in Figure 1. The branch corresponding to (t0−1) =
0 is the blue vertical line segment. The second branch described by

(
2 t30 − 3 t1t0 + t1

)
= 0

is the end point (1, 1) of the blue line segment. The third branch corresponds to the union
of the (upper) brown and (lower) green curves parametrized by

ψ1 = {(s, F1(s)) | s ∈ [1, 11/6]}, ψ2 = {(s, F2(s)) | s ∈ [1, 11/6]}, (7.3)

respectively, where F1 = (t30(199 + 642t0 + 9t20 + 30∆))/(4(21t0− 1)2), F2 = (t30(199 + 642t0 + 9t20−
30∆)/(4(21t0 − 1)2), and ∆ , (3t0 + 2)

√
(4t0 + 1) (11− 6t0).

It follows from Theorem 7.1 that the moduli space is M = S/σ with the simple closed
curve S1 on its boundary. By applying the coordinate transformation (t0, t1, t6) 7→ (t0, t1, λ)
with λ = 1/g, we can plot M as in Figure 2. It looks like a horn, with S1 marked in red,
and the level sets of g = 2 and g = 3 marked in green and blue, respectively. The figure
seems to suggest that the moduli space M is a topological disk. It would be interesting to
see whether this is indeed the case.

Example 1. We point out that examples on the blue line segment coincide with the 1-
parameter family (6.6) in Remark 6.1. In fact, it follows from (6.8) that

t0 = 1, t2 = t1, t3 = 5t21/(4t1 + 1), t4 = t21, t5 = t31, t6 = t31,

a00 = 1, a11 = 1, a22 = a33 = 1/
√
t1, a44 = 1/t1.

Moreover, substituting all the data into (6.3), we obtain that(
1 0 −

√
6e
√
−1θ2z2 −4

√
t3
t1
e
√
−1θ3z3 −3e

√
−1θ4z4

0 1
√

6e
√
−1θ1z 3e

√
−1θ2z2 2

√
t3
t1
e
√
−1θ3z3

)
. (7.4)
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Figure 1. The level set S1 Figure 2. The moduli space M

Set t1 , (5 + 3 cos θ)/(20− 12 cos θ), then cos θ = (20t1 − 5)/3(4t1 + 1). Then θ0 ,
0, θ6 , 0, and

θ1 , θ −
β0 − β1

2
, θ2 , θ, θ3 , θ +

β0 + β1
2

, θ4 , θ, θ5 , θ −
β0 − β1

2
,

satisfy (6.9), where

β0 = Arg

(
3 + e

√
−1θ

√
10 + 6 cos θ

)
, β1 = Arg

(
3− e

√
−1θ

√
10− 6 cos θ

)
.

It is straightforward to verify that (6.6) differs from (7.4) by multiplying its third and fourth

columns by e
√
−1(β1−β0+θ), its last column by e

√
−1(2(β1−β0)+θ), and performing a reparam-

eterization z 7→ e
√
−1(β0−β1)/2z. Note that ±θ give the same t1; they correspond to the two

complex-conjugated solutions.

Proposition 7.2. The second fundamental form of a generic constantly curved holomorphic
2-sphere of degree 6 is not parallel, except for that of the standard Veronese curve (1.1).

Proof. We need only show that ||A||2, the norm squared of the second fundamental form, is
not constant. It follows from the Gauss equation that

||A||2 = 20/3− ||∂F/∂z ∧ ∂F/∂z||2/(9(1 + |z|2)8), (7.5)

where F is the Plücker embedding of the holomorphic 2-sphere in G(2, 5) into CP 9 (see
[22, p.6, p.9] for details). Note that ||∂F/∂z ∧ ∂F/∂z||2 only vanishes at ramified points.
Therefore, using Corollary 4.2 we can derive that the second term on the right-hand side of
||A||2 is not constant. �

Remark 7.2. In submanifold geometry, the norm squared integral of the second funda-
mental form is an important extrinsic curvature functional. For generic constantly curved
holomorphic 2-spheres of degree 6, this functional (denoted by W) can be calculated from
(6.1), (6.7), (6.8), (6.9) and (7.5) to be∫

CP1
|A|2dS =2π

[
20 +

16

105 (3t0 + 2) 2 (2λ+ 3t0) 2
(
4λt1 + t30

)
2

(
1664λ

4
t
2
1 + 192λ

3
(λ+ 1)t

2
1t0

− 144λ
(
87λ

2
+ 548λ+ 87

)
t1t

5
0 − 48λ

2
t1t

4
0 (673(λ+ 1)− 1863t1)

+ 32λ
2
t1t

3
0 (1701(λ+ 1)t1 − 374λ) + 144λ

2
(
101λ

2
+ 4λ+ 101

)
t
2
1t

2
0

− 9
(
249λ

2
+ 1396λ+ 249

)
t
8
0 − 36λt

7
0 (158(λ+ 1)− 567t1)

− 2673(λ+ 1)t
9
0 − 4λt

6
0 (574λ+ 4671(λ+ 1)t1) + 3564t

10
0

)]
, λ = 1/g.

(7.6)
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It can be verified directly that the maximum of W is 40π, and is attained by the standard
example (1.1). The following figure, where two level sets of W, in blue, as well as the moduli
space M, in brown, are shown, seems to suggest that W takes its minimum value 184π/7
at the example given by t0 = 1, t1 = 1/16, g = 1, i.e., at(

1 0 −
√

6z2 −2 z3 −3z4

0 1
√

6z 3z2 4z3

)
. (7.7)

Example 2. On the level set S1, choose t0 = 11/6. Then we can solve for t1 = 1331/864.
It gives an exact solution to (6.14),

t0 =
11

6
, t1 =

131

864
, t2 =

14641

7776
, t3 =

73205

41472
, t4 =

1771561

1119744
, t5 = t6 =

19487171

17915904
,

It is checked that X = Y = 5
√

5/
√

33 and Z = 2. from which the angles {θ1, · · · , θ5} can
be solved.

Example 3. On the level set S1, choose t0 =
(
2
√

79 + 20
)
/21. Then we can solve for

t1 =
(
2
√

79 + 20
)
/21. It gives an exact solution to (6.14),

t0 = t1 = t5 = t6 =
(

2
√

79 + 20
)
/21, t2 = t4 =

(
23
√

79 + 209
)
/189,

t3 = (9 +
√

79)/8,

from which the angles {θ1, · · · , θ5} can be solved. Note that for this example, the diagonal
matrix A has two distinct eigenvalues a00 = a44 6= a11 = a22 = a33.

Example 4. Start with the equations P , X2−4 = 0, Q , Y 2−4 = 0, R , Z2−4 = 0, with
X,Y, Z given in (6.12) to express them in terms of the variables t0, t1, g, with t6 = t31/(t

2
0g)

by (7.1). Continue to compute the derived resultants of the refined numerators P ′, Q′, R′

of P,Q,R, in terms of t0, t1, g, after removing powers of g − 1, and those single-variable
factors without positive solutions by, e.g., Sturm’s algorithm for counting the exact number of
distinct positive roots of a real polynomial, while setting aside possible candidate polynomials
before proceeding with the next level of resultant computation; along the way, we heed the
constraint that (gt0, gt1, 1/g) is a set of solution if (t0, t1, g) is, by Proposition 7.1, to further
narrow down the candidates. We end up with the exact equations for possible t0, t1, g :

p , 3004245721g
6 − 139634316726g

5 − 67838574585g
4 − 318786958820g

3 − 67838574585g
2

− 139634316726g + 3004245721 = 0,

q , 2537649t
6
0 − 40347234t

5
0 + 36454860t

4
0 − 19711080t

3
0 + 26076060t

2
0 − 17915544t0 + 3452164 = 0,

r , 6861904453295341780216896t
6
1 − 57789440847499427495680896t

5
1 − 3541432129528999644182160t

4
1

+ 2695787548715827169923680t
3
1 − 242591843875043061525060t

2
1 − 261056339362401426814176t1

+ 53689575410338079139841 = 0.
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Compute the Gröbner basis of the ideal (P ′, Q,′R′, p, q, r) to obtain the basis consisting of
six elements of which we only record the two essential ones,

E , 30407219135534569920865279281g
2
t1 − 5684396631350441922486404084g

2

+ 4826381508202691775218328738gt1 + 8781109390742136392820835978g

+ 22087970177286319548246901485t0 − 37952752504503427337193407559t1

− 10129670167010754418270796864 = 0,

G , 323983664320381367395969030814241g
3 − 15097919249633508113716536736052777g

2

+ 24001947052912436490532391777190000gt1 − 10297270579570244241163795555112489g

− 21160216103727154670480065729425120t0 + 38155570002907589892718590589124280t1

− 10753529104240427995602453394128335 = 0.

We obtain t0 , R/S and t1 = T/U in closed form of g, where

R , 323983664320381367395969030814241g
5 − 15046494988853004912329176221825959g

4

− 8611085577295995251867740593198034g
3
+ 6658017307603866925677723269688366g

2

+ 8122830950478969874129540484608001g + 26132918116090821757236925434099385,

S , 21160216103727154670480065729425120g
2
+ 20793797801629220801560324794395760g

+ 1305303435283084266467628002760120,

T , −423618308217230277983078980100353g3 + 26861312395386909671099284789417865g
2

+ 2464682459146076205358051730246729g + 26749087059945119323559494796984559,

U , 38088388986708878406864118312965216g
2
+ 37428836042932597442808584629912368g

+ 2349546183509551679641730404968216.

It is then checked that all the remaining equations in the basis are compatible with p = 0.
Now, p = 0 has two positive real roots reciprocal to each other as the coefficients of p are
symmetric, which are approximately g ∼ 0.0212731522 and 47.0076078738 (Since all the
above polynomial equations are exact, the listed numerical values are accurate up to the
last digit, checked by the intermediate value theorem, for instance.) We then derive the
corresponding values for t0 and t1 through R,S, T, U to yield

(t0, t1, g) ∼ (0.3184944933, 0.1803379951, 47.0076078738), or

∼ (14.9716642533, 8.4772577609, 0.0212731522),

accurate up to the last digit, in accord with Proposition 7.1; both give X = Y = Z = 2. The
second set gives the pointed end of the horn in Figure 2.

This is the third and the last example, aside from the two given in Remark 6.5 with g = 1,
for which there is only one constantly curved 2-sphere in the corresponding Fano 3-fold
A(H3

0), where A is computed by (6.7).

Example 5. Set t1 , t20/6 in F given in (6.14) and factor out positive terms to yield

f(g, t0) , 190512g
4
t
6
0 + 20736g

4
t
5
0 + 95256g

3
t
6
0 + 27g

4
t
4
0 − 205416g

3
t
5
0 − 401301g

3
t
4
0

− 104328g
2
t
5
0 − 6264g

3
t
3
0 − 59319g

2
t
4
0 + 168282g

2
t
3
0 + 32913gt

4
0 + 202140g

2
t
2
0 + 35388gt

3
0

+ 6720gt
2
0 + 2034t

3
0 + 19504gt0 + 2460t02 + 688t0 − 32 = 0.

It defines a plane algebraic curve C. We claim that C∗ ⊂ C falling in the rectangle R
given by 8/15 ≤ t0 ≤ 5, 1475/10000 ≤ g ≤ 3, is a smooth, connected closed curve contained
in S, the double of the moduli space M.

Firstly, observe that (t0, g) = (1, 1) solves f = 0 so that that C∗ is not empty. It is also

directly checked that ∂f
∂t0
/∂f∂g = 2 at (t0, g) = (1, 1), so that the implicit function theorem

implies that f = 0 is locally a curve (t0, g(t0)) around (t0, g) = (1, 1) with negative slope.
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Setting t0 , 8/15 or 5, and g , 1475/10000 or 3, respectively, we solve f(g, t0) = 0 to
attain (accurate up to the last digit for the exact polynomials)

for t0 = 8/15, @ real g, while for t0 = 5, g ∼ −0.4687373438, or − 0.0109931977;

for g = 1475/10000, t0 ∼ 0.0088038166, while for g = 3,

t0 ∼ −0.5591240674,−0.4272041173,−0.0337884110, 0.0005317397.

This means that the set C∗ never leaves the rectangle R, so that by analytic continuation
of an algebraic curve, C∗ consists of closed curves and, a priori, a few isolated points. The
latter can be ruled out since these finitely many points must satisfy f = ∂f/∂t0 = ∂f/∂g = 0
and the Gröbner basis associated with the ideal (f, ∂f/∂t0, ∂f/∂g) is {g − 1, 3t0 + 2} whose
zero locus (t0, g) = (−2/3, 1) does not fall in the domain R. As a result, it also implies that
the finitely many closed curves constituting C∗ are smooth and disconnected in R.

By calculating the resultants of f = ∂f/∂t0 = 0 against g and t0 and solving for the roots,
we verify that none of the possible pairs of (t0, g) satisfy (6.13) (see the remark below for the
engaged computational error analysis for rational functions), except possibly for two points
(t0, g) approximately at

(0.6547026351, 2.9099350324), or (4.5794327836, 0.1475263321), (7.8)

accurate up to the last digit. Since there exist at least two such points, this proves that C∗ is
only tangent to the horizontal lines, g = constants, precisely at the two points; likewise, this
is also true for the vertical line test. In particular, C∗ has only one connected component
as, otherwise, we would have more than two points tangent to horizontal or vertical lines.

We calculate the resultants of f and the numerator of R , Z2 − 4 against g and t0 and
solve for the roots, to confirm that the only point of intersection of the curve C∗ and the
boundary of Z2 ≤ 4 occurs with tangency at

(t0, g) ∼ (1.5271772661, 0.4663765333),

with the corresponding X = Y ∼ 1.8718004195 and Z = 2. It follows that C∗ lies completely
in Z2 ≤ 4 since (t0, g) = (1, 1) satisfies Z2 < 4. In particular, the three constraints in (6.15)
are satisfied by Remark 6.4.

Figure 3 depicts the curve C∗ (in red) in S. Since it extends into the region with g > 1,
we apply the involution σ to flip it back intoM with g ≤ 1. Figure 4 shows the resulting self-
crossing, flipped C∗ (in red), which opens at g = 1 for which t0 = 1 or t0 ∼ 1.4542230103.
The region bounded by the three constraints is colored yellow.

Figure 3. The curve C∗ in S Figure 4. Folded C∗ in M

Remark 7.3. Let f(x, y) =
∑M,N

m,n=0 amn x
myn and l(x, y) ,

∑I,J
i,j=0 bij x

iyj over a rectangle

R : [a, b]×[c, d] with a, c > 0. Assume l(x, y) > 0 and define the positive function ||f ||(x, y) ,
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∑M,N
m,n=0 |amn|xmyn over R. Given (x0, y0), (x, y) ∈ R with 0 < |x0 − x|, |y0 − y| < h, where

h > 0 is so small that nh << 1 for n = M,N, I, or J , then p(x, y) , f(x, y)/l(x, y) satisfies
the error estimate

|p(x0, y0)− p(x, y)| ≤ (C(M,N) + C(I, J)) sup
(x,y)∈R

(||f ||(x, y)/l(x, y)), (7.9)

where, for n ∈ N with nh < 1, we define γn , nh/(1− nh), and

C(p, q) , (e1/a − 1)γp + (e1/c − 1)γq + (e1/a − 1)(e1/c − 1)γpγq

for p, q ∈ N. (We leave it to the reader to verify.)

In Example 5, x , g and y , t0, R is the rectangle [1475/10000, 3]× [8/15, 5], and f(g, t0)
is given in Example 5. Write, for H in (6.13),

H = f(g, t0)/l(g, t0), l(g, t0) , 405000 t30 g
2 (3t0 + 2) (3gt0 + 2) > 0,

Since M = 4, N = 6, A = 3, and B = 5, if we take h , 10−20, the error estimate
(7.9) gives that C(M,N) +C(A,B) is in the magnitude of 10−17, and an elementary mini-
max estimate derives ||f ||(x, y)/g(x, y) ≤ 1 for all (x, y) ∈ R, so that the error is in the
magnitude of 10−17. Consequently, all the engaged computations for the data satisfying
H 6= 0 to obtain, e.g., (7.8) are accurate up to the tenth decimal place if we set the last
significant decimal place to be the twentieth; all the undesired values, in fact, are such that
their third decimal digits are nonzero to satisfy H 6= 0.
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