FANO 3-FOLDS AND CLASSIFICATION OF CONSTANTLY CURVED HOLOMORPHIC 2-SPHERES OF DEGREE 6 IN THE COMPLEX GRASSMANNIAN $G(2,5)$

QUO-SHIN CHI, ZHENXIAO XIE, YAN XU

Abstract

Up to now the only known example in the literature of constantly curved holomorphic 2-sphere of degree 6 in the complex $G(2,5)$ has been the first associated curve of the Veronese curve of degree 4. By exploring the rich interplay between the Riemann sphere and projectively equivalent Fano 3-folds of index 2 a nd degree 5, we prove, up to the ambient unitary equivalence, that the moduli space of generic (to be precisely defined) such 2 -spheres is semialgebraic of dimension 2. All these 2 -spheres are verified to have non-parallel second fundamental form except for the above known example.

1. Introduction

Minimal surfaces constitute one of the most enduring topics in Differential Geometry that not only enjoys its deep links with partial differential equations, complex analysis, and algebraic curves, but also finds intriguing connections to the physical world. In 1980, Din and Zakrzewski [17] classified complex projective σ-models, or, mathematically, harmonic maps from the 2 -sphere to the ambient projective space, to be the (projectivized) basis elements of a Frenet frame of a holomorphic $\mathbb{C} P^{1}$ into the ambient space. Subsequently, Burstall and Wood [7], Chern and Wolfson [11], and Uhlenbeck [38] independently generalized it to other ambient spaces by different methods.

Of all minimal surfaces, those of constant curvature in different ambient spaces form a model class that have continually drawn attention, such as Calabi [9, Wallach [39, Do Carmo-Wallach [19], Chen [10], Barbosa [3, Kenmotsu [28], and Bryant [6] in the real space forms, Kenmotsu [29], Bando-Ohnita [2], Bolton-Jensen-Rigoli-Wood [4], Chi-Jensen-Liao [12], and Kenmotsu [30] in the complex projective spaces, and Yau [40] in Kähler manifolds of nonnegative constant holomorphic sectional curvature. In particular, constantly curved minimal 2 -spheres in the real space forms are Borůvka spheres [5], up to rigid motion. Similarly, constantly curved minimal 2 -spheres in the complex projective spaces are, up to rigid motion, the (projectivized) basis elements of the Frenet frame of the Veronese curve of constant curvature, where the proof followed from Calabi's rigidity principle [8] that states that if the isometric embedding from one complex manifold into the complex projective space exists, then it is unique up to rigid motion.

The rigidity principle of Calabi no longer holds for general ambient spaces. Motivated by the Grassmannian σ-models introduced by Din and Zakrzewski [18] and the rigidity principle, the first named author and Zheng [14] classified the noncongruent, constantly curved

[^0]holomorphic 2-spheres of degree 2 in $G(2,4)$ into two 1-parameter families, by exploring the method of moving frames and Cartan's theory of higher order invariants [24. Later on, Li and Yu 32 classified all constantly curved minimal 2 -spheres in $G(2,4)$, using the Plücker embedding and the theory of harmonic sequence.

The next simplest ambient space is the complex Grassmannian $G(2,5)$. By analyzing a 2×5 matrix representation of a holomorphic $\mathbb{C} P^{1}$, constantly curved holomorphic 2spheres in $G(2,5)$ are divided into two classes by Jiao and Peng, the singular and the nonsingular ones (a technical condition different from the usual geometric meaning, see Section 2.2 for definition). They classified nonsingular constantly curved holomorphic 2spheres of degree less than or equal to 5 in $G(2,5)$, and proved the nonexistence of such spheres with degree $6 \leq d \leq 9$ [25, 26]. For the singular category, however, as the degree increases the computational complexity involved in their method rises dramatically. It is thus technically difficult to apply the method to construct singular 2 -spheres in general. Subsequently, there have emerged several partial classifications (e.g. under the condition of total unramification or homogeneity) of constantly curved holomorphic (minimal) 2-spheres in $G(2,5)$ or $G(2, n)$ in general; see [23, 35] and the references therein.

Constantly curved holomorphic 2 -spheres in $G(2,4)$ and $G(2,5)$ have also been studied by Delisle, Hussin and Zakrzewski in [16] from the viewpoint of Grassmannian σ-models, where the classification results they obtained coincide with those mentioned above. Moreover, they posed a conjecture about the upper bound of the degrees of constantly curved holomorphic 2 -spheres in the Grassmannians. This conjecture was affirmed by them in the case of $G(2,5)$, for which the upper bound equals 6 (see also a recent paper [22] with more detailed proof by He).

At the critical degree $d=6$, however, there does exist a singular (in the above sense) constantly curved holomorphic 2 -sphere of degree 6 in $G(2,5)$,

$$
\left(\begin{array}{ccccc}
1 & 2 z & \sqrt{6} z^{2} & 2 z^{3} & z^{4} \tag{1.1}\\
0 & 1 & \sqrt{6} z & 3 z^{2} & 2 z^{3}
\end{array}\right),
$$

referred to in this paper as the standard Veronese curve in $G(2,5)$. To the authors' knowledge, it has been the only known example in the literature. Surprisingly, we will show in this paper that the moduli space of constantly curved holomorphic 2 -spheres in $G(2,5)$ is a 2 -dimensional semialgebraic set, modulo rigid motion, out of which many explicit examples can be constructed.

Different from all existing methods, to see whether there are constantly curved holomorphic examples of degree 6 other than the standard Veronese curve in $G(2,5)$, let us return to our paper [13] for motivation, where we investigated constantly curved holomorphic (and minimal) 2 -spheres of degree d in the complex hyperquadric. Such a holomorphic 2 -sphere is a rational normal curve of degree d sitting in a projective d-plane, so that the 2 -sphere lies in the intersection of the d-plane and the hyperquadric called a linear section of the hyperquadric, which is itself a quadric (may be singular). Thus, the moduli space of such 2 -spheres is essentially a fibered space over the base space that is a semialgebraic subset of the variety of linear sections of the hyperquadric.

In a similar vein, albeit more sophisticated, via the Plücker embedding, a holomorphic 2-sphere of degree 6 contained in $G(2,5) \subset \mathbb{C} P^{9}$ is a rational normal curve sitting in a projective 6-plane \mathbf{L} in $\mathbb{C} P^{9}$; thus, the curve lies in the linear section $\mathbf{L} \cap G(2,5)$. Castelnuovo [15] showed that generic (see Section 3 for definition) such linear sections constitute
the intriguing class of Fano 3-folds of index 2 and degree 5 all of which are projectively equivalent (see also [37] for a detailed modern account and Section 3 for a quick overview).

Employing $\operatorname{PSL}(2, \mathbb{C})$-representations, Mukai and Umemura 34 constructed a beautiful Fano 3 -fold of index 2 and degree 5 , which can be identified naturally with the linear section of $G(2,5)$ cut out by the 6 -plane \mathbf{L}_{0} containing the above standard Veronese curve, where \mathbf{L}_{0} turns out to be precisely the irreducible $P S L(2, \mathbb{C})$-module V_{6} of dimension 7 . This fits ideally in our differential-geometric framework for computation when the condition of constant curvature is engaged. By exploring Mukai and Umemura's orbit decomposition structure, we may, by the fact that a rational normal curve is extremal in the sense of Castelnuovo [1], lift every holomorphic 2-sphere of degree 6 in $V_{6} \cap G(2,5)$ to a line in the natural $\mathbb{C} P^{3}$ containing $P S L(2, \mathbb{C})$ (see Lemma 4.1 in Section 3). Since all generic Fano 3 -folds of index 2 and degree 5 are projectively equivalent, this lifting property provides us with a vantage point to parametrize generic holomorphic 2-spheres of degree 6 in $G(2,5)$, for us to be able to narrow down the Fano 3 -folds in which constantly curved holomorphic 2 -spheres of degree 6 live.

Theorem 1. Let $\gamma: \mathbb{C} P^{1} \rightarrow G(2,5)$ be a constantly curved holomorphic 2 -sphere of degree 6. Suppose that the 6-plane \mathbf{L} spanned by γ is generic (in the Castelnuovo sense). Then up to $U(5), \mathbf{L}$ differs from $\mathbf{L}_{\mathbf{0}}$ by a diagonal transformation of $G L(5, \mathbb{C})$.

An elaborate unitary analysis then enables us to further determine the family of diagonal transformations $A \in G L(5, \mathbb{C})$ that allows the linear section $A\left(\mathbf{L}_{\mathbf{0}} \cap G(2,5)\right)$ to contain constantly curved holomorphic 2 -spheres of degree 6 .

Theorem 2. The moduli space of generic constantly curved holomorphic 2-spheres of degree 6 in $G(2,5)$ is a 2-dimensional semialgebraic set, up to the ambient $U(5)$-equivalence.

Of particular interest are three points in \mathcal{M}, for each of which the corresponding Fano 3 -fold contains a unique constantly curved holomorphic 2 -sphere of degree 6 , whereas the Fano 3 -fold corresponding to a point other than the three in \mathcal{M} contains exactly two distinct constantly curved holomorphic 2-spheres conjugated to each other in an appropriate sense (see Section 6).

Our approach facilitates the explicit construction of many new examples, through algebrogeometric means, of constantly curved 2 -spheres of degree 6 . Furthermore, it enables us to verify with ease that the second fundamental form of all generic constantly curved holomorphic 2 -spheres of degree 6 are nonparallel, and thus all are nonhomogeneous, except for the standard Veronese curve.

The paper is organized as follows. Section 2 is devoted to recall the representation theory of $P S L(2, \mathbb{C})$, as well as Jiao and Peng's classification of nonsingular (in their sense) constantly curved holomorphic 2 -spheres in $G(2,5)$. In Section 3, we introduce briefly the theory of generic linear sections of $G(2,5)$, and the Fano 3 -fold constructed by Mukai and Umemura, from which the parameterization of generic holomorphic 2 -spheres is obtained in Section 4. Starting from Section 5, we take the constant curvature condition into consideration and prove Theorem 1 in the section. We devote Section 6 to investigate the existence and uniqueness results for constantly curved holomorphic 2 -spheres in a given generic linear section. The moduli space characterized in Theorem 2 is studied in Section 7 , where we also exhibit interesting individual as well as 1-parameter families of new examples.

2. Priliminaries

2.1. Irreducible representations of $P S L_{2}(\mathbb{C})$. Let V_{n} the the space of binary forms of degree n in two variables u and v, on which $P S L_{2}(\mathbb{C})$ (to be denoted by $P S L_{2}$) acts by

$$
\begin{equation*}
P S L_{2} \times V_{n} \rightarrow V_{n}, \quad(g, f) \mapsto(g \cdot f)(u, v) \triangleq f\left(g^{-1} \cdot(u, v)^{t}\right) . \tag{2.1}
\end{equation*}
$$

It is well-known that $V_{n}, n \in \mathbb{Z}_{\geq 0}$, are the only finite-dimensional irreducible representations of $P S L_{2}$.

Choose the following basis of V_{n},

$$
\begin{equation*}
e_{l} \triangleq\binom{n}{l}^{\frac{1}{2}} u^{n-l} v^{l}, l=0, \ldots, n \tag{2.2}
\end{equation*}
$$

Under this basis, write

$$
\begin{equation*}
\left(e_{0}, \ldots, e_{n}\right) \rho^{n}(g) \triangleq\left(g \cdot e_{0}, g \cdot e_{1}, \ldots, g \cdot e_{n}\right) . \tag{2.3}
\end{equation*}
$$

The representation $\rho^{n}(g): P S L_{2} \rightarrow G L(n+1 ; \mathbb{C})$ induces the wedge-product representation

$$
\begin{equation*}
P S L_{2} \times V_{n} \wedge V_{n} \rightarrow V_{n} \wedge V_{n}, \quad\left(g, e_{k} \wedge e_{l}\right) \mapsto\left(g \cdot e_{k}\right) \wedge\left(g \cdot e_{l}\right), 0 \leq k, l \leq n . \tag{2.4}
\end{equation*}
$$

For the sake of clarity, we view $V_{n} \wedge V_{n}$ as the space of anti-symmetric matrices $\wedge^{2} \mathbb{C}^{n+1}$, by identifying $e_{k} \wedge e_{l}$ with the anti-symmetric matrix $E_{k l}-E_{l k} \in M_{n+1}(\mathbb{C})$, where the only nonvanishing entry of $E_{k l}$ is 1 at the (k, l) position, $0 \leq k<l \leq n$. With the basis $\left\{e_{k} \wedge e_{l} \mid 0 \leq k<l \leq n\right\}$ (see (2.2), it is not difficult to obtain the wedge-product representation in matrix form,

$$
\rho^{n} \wedge \rho^{n}: P S L_{2} \times \wedge^{2} \mathbb{C}^{n+1} \rightarrow \wedge^{2} \mathbb{C}^{n+1}, \quad(g, A) \mapsto\left(\rho^{n}(g)\right) \cdot A \cdot\left(\rho^{n}(g)\right)^{t}
$$

The Clebsch-Gordan formula states that

$$
\begin{equation*}
V_{n} \wedge V_{n} \cong V_{2 n-2} \oplus V_{2 n-6} \oplus \ldots \oplus V_{r} \tag{2.5}
\end{equation*}
$$

where r is the remainder of $2 n-2$ divided by 4 , moreover, for any given even number $p \in[1, n]$, the projection $V_{n} \wedge V_{n} \rightarrow V_{2 n-2 p}$ can be formulated by

$$
\begin{equation*}
(f, h) \mapsto(f, h)_{p} \triangleq\left(\frac{(n-p)!}{n!}\right)^{2} \sum_{i=0}^{p}(-1)^{i}\binom{p}{i} \frac{\partial^{p} f}{\partial u^{p-i} \partial v^{i}} \frac{\partial^{p} h}{\partial u^{i} \partial v^{p-i}} . \tag{2.6}
\end{equation*}
$$

which is $P S L_{2}$-equivariant, and is called the p-th transvectant.
2.2. Holomorphic 2 -spheres in $G(2,5)$. We briefly review some basic facts of constantly curved holomorphic 2 -spheres in the complex Grassmannian $G(2,5)$, and along the way introduce those nonsingular ones that Jiao and Peng [25] defined and classified.

Throughout, we equip $G(2,5)$ with the standard Kähler metric

$$
\mathrm{g} \triangleq \operatorname{tr}\left(\left(I_{2}+P P^{*}\right)^{-1} d P\left(I_{5}+P^{*} P\right)^{-1} d P^{*}\right)
$$

where $P \in G(2,5)$ is seen as a 2×5 matrix, which is induced from the Fubini-Study metric of $\mathbb{C} P^{9}$ when $G(2,5)$ is realized as a subvariety of $\mathbb{C} P^{9}$ by the Plücker embedding, .

$$
i: G(2,5) \rightarrow \mathbb{P}\left(\wedge^{2} \mathbb{C}^{5}\right) \cong \underset{4}{\mathbb{C}} P^{9}, \operatorname{span}\{u, v\} \mapsto[u \wedge v]
$$

Explicitly, let $\left\{\epsilon_{0}, \epsilon_{1}, \ldots, \epsilon_{4}\right\}$ be a basis of \mathbb{C}^{5}. Then $\left\{\epsilon_{i} \wedge \epsilon_{j} \mid 0 \leq i<j \leq 4\right\}$ forms a basis of $\wedge^{2} \mathbb{C}^{5}$ so that $p=\sum_{i, j} p_{i j} \epsilon_{i} \wedge \epsilon_{j}$ belongs to $G(2,5)$ if and only if $p \wedge p=0$, which is equivalent to

$$
\begin{array}{ll}
p_{01} p_{23}-p_{02} p_{13}+p_{03} p_{12}=0, & p_{01} p_{24}-p_{02} p_{14}+p_{04} p_{12}=0, \\
p_{01} p_{34}-p_{03} p_{14}+p_{04} p_{13}=0, & p_{02} p_{34}-p_{03} p_{24}+p_{04} p_{23}=0, \tag{2.7}\\
p_{12} p_{34}-p_{13} p_{24}+p_{14} p_{23}=0 . &
\end{array}
$$

Remark 2.1. It follows from the definition that $G(2,5)$ is $P S L_{2}$-invariant under the wedgeproduct action $\rho^{4} \wedge \rho^{4}$ given in (2.4).

Let $\varphi: \mathbb{C} P^{1} \rightarrow G(2,5)$ be a holomorphic 2 -sphere. It follows from the Normal Form Lemma [36] that there exist two holomorphic curves $f, g: \mathbb{C} P^{1} \rightarrow \mathbb{C} P^{4}$, such that $\varphi=$ $\operatorname{span}\{f, g\}$. Explicitly, choosing an affine coordinate z on $\mathbb{C} P^{1}$, we can write $f(z)=$ $\left(f_{0}(z), \ldots, f_{4}(z)\right)$ and $g(z)=\left(g_{0}(z), \ldots, g_{4}(z)\right)$ as row vectors with polynomial entries except at some isolated points.

In view of Remark 2.1, we obtain that φ is of constant curvature K if and only if $i \circ \varphi$ is of constant curvature K under the Plücker embedding. This guarantees that the rigidity principle of Calabi can be employed to study constantly curved holomorphic 2 -spheres in $G(2,5)$, which we rephrase as follows for reference.
Lemma 2.1. Let $f: \mathbb{C} P^{1} \rightarrow \mathbb{C} P^{n}$ be a holomorphic 2 -sphere of degree d. The following are equivalent.
(1) The Gauss curvature K of f is $\frac{4}{d}$. Furthermore, up to the action of $U(n+1)$ and Möbius reparametrization, f is given by the Veronese sphere

$$
\begin{equation*}
Z_{d}(z) \triangleq\left[1: \sqrt{d} z: \cdots: \sqrt{\binom{d}{k}} z^{k}: \cdots: z^{d}\right]^{t} . \tag{2.8}
\end{equation*}
$$

(2) There is an affine chart $z \in \mathbb{C}$ over which $|f|^{2}=\left(1+|z|^{2}\right)^{d}$.
(3) There is an affine chart $z \in \mathbb{C}$ over which $f=\sum_{k=0}^{d} \sqrt{\binom{d}{k}} A_{k} z^{k}$, and $\left\{A_{0}, A_{1}, \cdots, A_{6}\right\}$ forms an orthonormal basis of the d-plane spanned by f.
For a constantly curved holomorphic 2 -sphere $\varphi: \mathbb{C} P^{1} \rightarrow G(2,5)$, it is known [25, 31, 32] that φ can be parameterized as $\varphi=\left(\varphi_{1}(z), \varphi_{2}(z)\right)^{t}$ with

$$
\begin{equation*}
\varphi_{1}(z)=\left(1,0, \varphi_{12}(z), \varphi_{13}(z), \varphi_{14}(z)\right), \varphi_{2}(z)=\left(0,1, \varphi_{22}(z), \varphi_{23}(z), \varphi_{24}(z)\right), \tag{2.9}
\end{equation*}
$$

where $\varphi_{1 i}(z)$ and $\varphi_{2 i}(z)(2 \leq i \leq 4)$ are polynomials vanishing at $z=0$. In the sequel, (2.9) will be called a standard parameterization of φ. We point out that this kind of parameterization is not unique. In fact, if $\left\{\varphi_{1}, \varphi_{2}\right\}$ is a standard parameterization of φ, then $\left\{\alpha \varphi_{1}+\beta \varphi_{2},-\bar{\beta} \varphi_{1}+\bar{\alpha} \varphi_{2}\right\}$ is also a standard parameterization after rotating ϵ_{0} and ϵ_{1} while maintaining $|\alpha|^{2}+|\beta|^{2}=1$.

In [25], a holomorphic 2 -sphere $\varphi: \mathbb{C} P^{1} \rightarrow G(2,5)$ is called nonsingular if there exists a standard parameterization $\left\{\varphi_{1}, \varphi_{2}\right\}$ of φ, such that $\left[\varphi_{1}(\infty)\right] \neq\left[\varphi_{2}(\infty)\right]$ in $\mathbb{C} P^{4}$. Otherwise, φ is called singular. It is easy to verify that φ is nonsingular if and only if there exists a standard parameterization $\left\{\varphi_{1}, \varphi_{2}\right\}$ of φ, such that

$$
\begin{equation*}
\operatorname{deg} \varphi=\operatorname{deg} \varphi_{1}+\operatorname{deg} \varphi_{2} \tag{2.10}
\end{equation*}
$$

Using a standard parameterization, one can construct explicitly nonsingular examples as was done by Jiao and Peng in [25]. Indeed, under the nonsingular assumption, Jiao and Peng in the paper proved the following nonexistence result.

Theorem 2.1. There does not exist nonsingular holomorphic constantly curved 2-spheres of degree 6 in $G(2,5)$.

The idea goes as follows. By contradiction, otherwise, It would follow from 2.10 that we had only three possibilities that $\left(\operatorname{deg} \varphi_{1}, \operatorname{deg} \varphi_{2}\right)=(5,1),(4,2),(3,3)$. In each case, we obtained vectors $A_{k}, 0 \leq k \leq 6$, where $i \circ \varphi=\varphi_{1} \wedge \varphi_{2} \triangleq \sum_{k=0}^{6} \sqrt{\binom{d}{k}} A_{k} z^{k}$, in terms of undermined coefficients of φ_{1} and φ_{2} to violate item (3) of Lemma 2.1.

As the degree of φ increases, however, the number of undetermined coefficients rises dramatically, so that it is technically difficult to apply the method to construct singular 2-spheres.

It is readily verified that the Veronese curve (1.1) given in the introduction is singular in terms of Jiao and Peng's definition, where a standard parameterization in the sense of (2.9) can be chosen to be

$$
\left(\begin{array}{ccccc}
1 & 0 & -\sqrt{6} z^{2} & -4 z^{3} & -3 z^{4} \tag{2.11}\\
0 & 1 & \sqrt{6} z & 3 z^{2} & 2 z^{3}
\end{array}\right)
$$

We point out that this example is smooth (nonsingular) in the usual algebro-geometric sense, which is indeed what we are after.
2.3. Reducible and Irreducible holomorphic curves in $G(2,5)$. For later purposes, we develop the extrinsic geometry of holomorphic curves in $G(2,5)$ from the viewpoint of developable surfaces.

Let $f: M \rightarrow G(2,5)$ be a holomorphic map from a Riemann surface M. Composing with the Plücker embedding, $F \triangleq i \circ f$ is a holomorphic curve in $\mathbb{C} P^{9}=P\left(\wedge^{2} \mathbb{C}^{5}\right)$. Since F lies in $G(2,5)$, we have $F \wedge F \equiv 0$, whose derivative with respect to a local complex coordinate z yields that $F \wedge \partial F / \partial z=0$. Consider the developable surface \mathcal{D} of F in $\mathbb{C} P^{9}$, spanned by F and its tangent line $\partial F / \partial z$,

$$
\mathcal{D} \triangleq\left\{[u F+v \partial F / \partial z] \mid[u: v] \in \mathbb{C} P^{1}\right\}
$$

Lemma 2.2. The following are equivalent.
(1) The developable surface \mathcal{D} of F lies in $G(2,5)$.
(2) $\partial F / \partial z \wedge \partial F / \partial z \equiv 0$.

The lemma follows by differentiating $(u F+v \partial F / \partial z) \wedge(u F+v \partial F / \partial z)=0$ while employing $F \wedge \partial F / \partial z=0$.

Inspired by the first item in Lemma 2.2 , we call a holomorphic curve $f: M \rightarrow G(2,5)$ reducible, if the developable surface of \mathcal{D} of $F=i \circ f$ also lies in $G(2,5)$; otherwise, we call f irreducible. If $f: M \rightarrow G(2,5)$ is irreducible, then $\partial F / \partial z \wedge \partial F / \partial z$ has isolated zeroes, which we call ramified points (with multiplicity).

Remark 2.2. In the theory of harmonic sequence, a holomorphic curve $f: M \rightarrow G(2,5)$ is called reducible if the rank of the next term f_{1} is strictly less than 2 ; see [27]. This definition coincides with the above definition. We thank Professor L. He for helpful discussions about $i t$.

It was proven in 20 that a constantly curved reducible holomorphic 2 -sphere of degree 6 is rigid, which is unitarily equivalent to the standard Veronese curve (1.1) in $G(2,5)$. As a result, we need only consider irreducible holomorphic 2 -spheres in $G(2,5)$ in the sequel.

3. Generic linear sections of $G(2,5)$ and Fano 3 -folds of index 2 and degree 5

To motivate, a holomorphic 2 -sphere of degree 6 in $G(2,5)$ lies in a 6 -plane \mathbf{L} in $\mathbb{P}\left(\wedge^{2} \mathbb{C}^{5}\right) \cong$ $\mathbb{C} P^{9}$, and so it lives in the intersection $\mathbf{L} \cap G(2,5)$ called a linear section of $G(2,5)$. The dual 2-plane of \mathbf{L} in $\left(\wedge^{2} \mathbb{C}^{5}\right)^{*}$ is given by a linear system

$$
\begin{equation*}
\lambda A+\mu B+\tau C, \quad[\lambda: \mu: \tau] \in \mathbb{C} P^{2} \tag{3.1}
\end{equation*}
$$

where A, B, C are fixed skew-symmetric matrices of size 5×5 identified with elements in $\left(\wedge^{2} \mathbb{C}^{5}\right)^{*}$. Following [37], we say that \mathbf{L} is generic if all matrices in the linear system are of rank 4 , and the associated cut $\mathbf{L} \cap G(2,5)$ is referred to as a generic linear section. Let us look at a concrete example next.

By the Clebesch-Gordan formula 2.5 , we obtain that $\wedge^{2} \mathbb{C}^{5} \cong V_{6} \oplus V_{2}$. Here, we identify V_{6} with a $P S L_{2}$-invariant subspace of 5×5 anti-symmetric matrices by

$$
\sum_{i=0}^{6} \sqrt{\binom{6}{i}} a_{i} u^{6-i} v^{i} \mapsto\left(\begin{array}{ccccc}
0 & a_{0} & a_{1} & \sqrt{\frac{3}{5}} a_{2} & \frac{1}{\sqrt{5}} a_{3} \tag{3.2}\\
-a_{0} & 0 & \sqrt{\frac{2}{5}} a_{2} & \frac{2}{\sqrt{5}} a_{3} & \sqrt{\frac{3}{5}} a_{4} \\
-a_{1} & -\sqrt{\frac{2}{5}} a_{2} & 0 & \sqrt{\frac{2}{5}} a_{4} & a_{5} \\
-\sqrt{\frac{3}{5}} a_{2} & -\frac{2}{\sqrt{5}} a_{3} & -\sqrt{\frac{2}{5}} a_{4} & 0 & a_{6} \\
-\frac{1}{\sqrt{5}} a_{3} & -\sqrt{\frac{3}{5}} a_{4} & -a_{5} & -a_{6} & 0
\end{array}\right)
$$

An orthonormal basis of V_{6} is given by

$$
\begin{align*}
& E_{0} \triangleq e_{0} \wedge e_{1}, \quad E_{1} \triangleq e_{0} \wedge e_{2}, \quad E_{2} \triangleq \sqrt{3 / 5} e_{0} \wedge e_{3}+\sqrt{2 / 5} e_{1} \wedge e_{2} \\
& E_{3} \triangleq 1 / \sqrt{5} e_{0} \wedge e_{4}+2 / \sqrt{5} e_{1} \wedge e_{3}, \quad E_{4} \triangleq \sqrt{3 / 5} e_{1} \wedge e_{4}+\sqrt{2 / 5} e_{2} \wedge e_{3} \tag{3.3}\\
& E_{5} \triangleq e_{2} \wedge e_{4}, \quad E_{6} \triangleq e_{3} \wedge e_{4}
\end{align*}
$$

It is readily checked that $u v\left(u^{4}-v^{4}\right)$ (respectively, u^{6}) in V_{6} corresponds to $\left(E_{1}-E_{5}\right) / \sqrt{6}$ (respectively, E_{1}). Note that, the dual 6-plane to V_{6} is given by a linear system of the form in (3.1), where

$$
\begin{equation*}
A \triangleq \sqrt{6} p_{03}-3 p_{12}=0, B \triangleq 2 p_{04}-p_{13}=0, C \triangleq \sqrt{6} p_{14}-3 p_{23}=0 \tag{3.4}
\end{equation*}
$$

It is also readily checked that the rank of $\lambda A+\mu B+\tau C$ is 4 for every $[\lambda: \mu: \tau] \in \mathbb{C} P^{2}$. Therefore, as a linear section,

$$
\mathcal{H}_{0}^{3} \triangleq V_{6} \cap G(2,5)
$$

is generic.
Note also that the space V_{6} is the 6 -plane spanned by the standard Veronese curve in (1.1), which is precisely the orbit $P S L_{2} \cdot u^{6}$ confirmed by a computation with $\left(E_{0}, \cdots, E_{6}\right) \cdot Z_{6}(z)$, where Z_{6} is given in 2.8 , to see that they are agreeable.

We include a short outline of the following well known fact for the reader's convenience. Our reference is [37].
Theorem 3.1. All generic linear sections $\mathbf{L} \cap G(2,5)$ are PGL(5, $\mathbb{C})$-equivalent to \mathcal{H}_{0}^{3}.
To begin, the Pfaffian of a $(2 n) \times(2 n)$ skew-symmetric matrix M with entries $a_{i j}$ is defined to be

$$
p f(M) \triangleq \sum_{\sigma} \operatorname{sgn}(\sigma) a_{i_{1} j_{1}} a_{i_{2} j_{2}} \cdots a_{i_{n} j_{n}}
$$

where $\sigma:\{1,2, \cdots, 2 n\} \rightarrow\left\{i_{1}, j_{1}, i_{2}, j_{2}, \cdots, i_{n}, j_{n}\right\}$, in order, runs over permutations of $\{1,2, \cdots, 2 n\}$ satisfying $i_{s}<j_{s}, 1 \leq s \leq n$, and $i_{1}<i_{2}<\cdots<i_{n}$. The Pfaffian enjoys the property that if N is a $(2 n+1) \times(2 n+1)$ skew-symmetric matrix of rank $2 n$, then the

1 -dimensional kernel of N is spanned by the vector $\left(v_{1}, \cdots, v_{2 n+1}\right)$, where v_{i} is the diagonal Pfaffian of the $(2 n) \times(2 n)$ skew-symmetric matrix obtained by deleting the i th row and column.

Now, since the dual 2-plane of a generic 6-plane \mathbf{L} in $\wedge^{2}\left(\mathbb{C}^{5}\right)$ is a linear system $\lambda A+\mu B+$ $\tau C,[\lambda: \mu: \tau] \in \mathbb{C} P^{2}$, all of whose 5×5 skew-symmetric matrices are of rank 4 , we can use the associated diagonal Phaffians to define the center map

$$
\mathbf{c}:[\lambda: \mu: \tau] \in \mathbb{C} P^{2} \rightarrow \text { projectivized center of } \lambda A+\mu B+\tau C \in \mathbb{C} P^{4} .
$$

It is then verified that the center map is an embedding of $\mathbb{C} P^{2}$ into $\mathbb{C} P^{4}$ of degree 2 , and thus the image of \mathbf{c}, called the projected Veronese surface, is a generic projection from the standard Veronese surface in $\mathbb{C} P^{5}$ to $\mathbb{C} P^{4}$. Consequently, any two such 2-plane linear systems are $\operatorname{PGL}(5, \mathbb{C})$-equivalent, and so are the corresponding linear sections. In fact, $\mathbf{L} \cap G(2,5)$ is the closure of all lines in $\mathbb{C} P^{4}$ intersecting the associated projected Veronese surface in three distinct points.

Exploring the center map c, the authors in [37] also obtained the automorphism group of a generic linear section $\mathbf{L} \cap G(2,5)$.

Theorem 3.2. The automorphism group of a generic linear section $\mathbf{L} \cap G(2,5)$ is $P S L_{2}$.
Generic linear sections $\mathbf{L} \cap G(2,5)$ constitute all Fano 3-folds of index 2 and degree 5, first classified by Castelnuovo [15], which is to be denoted by \mathcal{H}^{3} henceforth; here, the degree is that of the Fano 3 -fold as a subvariety of $\mathbb{C} P^{9}$, whose index is 2 , the difference between its degree and codimension in $G(2,5)$, so that its anti-canonical bundle is $\simeq \mathcal{O}(2)$. To reference, we call $\mathcal{H}_{0}^{3}=V_{6} \cap G(2,5)$ introduced earlier the standard Fano 3-fold.

We point out that the automorphism group of a Fano 3 -fold of index 2 and degree 5 has also been studied by Mukai and Umemura in [34] from the viewpoint of algebraic group actions. By considering the action of $P S L_{2}$ on V_{6}, they proved that the closure of $P S L_{2} \cdot u v\left(u^{4}-v^{4}\right)$ is precisely \mathcal{H}_{0}^{3}. In the same paper, they also obtained the following beautiful orbit decomposition structure on \mathcal{H}_{0}^{3}.

Theorem 3.3.

$$
\mathcal{H}_{0}^{3}=\overline{P S L_{2} \cdot u v\left(u^{4}-v^{4}\right)}=P S L_{2} \cdot u v\left(u^{4}-v^{4}\right) \sqcup P S L_{2} \cdot u^{5} v \sqcup P S L_{2} \cdot u^{6} .
$$

Remark 3.1. In the above orbit decomposition, $P S L_{2} \cdot u v\left(u^{4}-v^{4}\right)$ is of dimension 3, which is parameterized as

$$
\begin{align*}
& f_{1}: P S L_{2} \mapsto \mathbb{P} V_{6}: \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot u v\left(u^{4}-v^{4}\right)=\left[a_{0}: a_{1}: \cdots: a_{6}\right], \\
& a_{0} \triangleq-\sqrt{6} d^{5} c+\sqrt{6} d c^{5}, \quad a_{1} \triangleq d^{4}(a d+5 b c)-5 a c^{4} d-b c^{5}, \\
& a_{2} \triangleq-b d^{3}(a d+2 b c) \sqrt{10}+a c^{3}(2 a d+b c) \sqrt{10}, \tag{3.5}\\
& a_{3} \triangleq b^{2} d^{2}(a d+b c) \sqrt{30}-a^{2} c^{2}(a d+b c) \sqrt{30}, \\
& a_{4} \triangleq-b^{3} d(2 a d+b c) \sqrt{10}+a^{3} c(a d+2 b c) \sqrt{10}, \\
& a_{5} \triangleq 5 a b^{4} d+b^{5} c-a^{4}(a d+5 b c), \quad a_{6} \triangleq-\sqrt{6} b^{5} a+\sqrt{6} b a^{5} .
\end{align*}
$$

Similarly, the orbit $P S L_{2} \cdot u^{6}$ is parameterized as

$$
\left(\begin{array}{ll}
a & b \tag{3.6}\\
c & d
\end{array}\right) \mapsto\left[d^{6}:-\sqrt{6} b d^{5}: \sqrt{15} b^{2} d^{4}:-\sqrt{20} b^{3} d^{3}: \sqrt{15} b^{4} d^{2}:-\sqrt{6} b^{5} d: b^{6}\right],
$$

It is precisely the Veronese curve Z_{6} in (2.8). Its developable surface constitutes the closure of the 2-dimensional orbit (see [34]),

$$
\overline{P S L_{2} \cdot u^{5} v}=P S L_{2} \cdot u^{5} v \sqcup P S L_{2} \cdot u^{6}
$$

where $P S L_{2} \cdot u^{5} v$ has the following parameterization

$$
\begin{align*}
& f_{2}: P S L_{2} \mapsto \mathbb{P} V_{6}: \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot u^{5} v=\left[b_{0}: b_{1}: \cdots: b_{6}\right] \\
& b_{0} \triangleq-\sqrt{6} d^{5} c, \quad b_{1} \triangleq d^{4}(a d+5 b c), \quad b_{2} \triangleq-b d^{3}(a d+2 b c) \sqrt{10} \tag{3.7}\\
& b_{3} \triangleq b^{2} d^{2}(a d+b c) \sqrt{30}, \quad b_{4} \triangleq-b^{3} d(2 a d+b c) \sqrt{10} \\
& b_{5} \triangleq 5 a b^{4} d+b^{5} c, \quad b_{6} \triangleq-\sqrt{6} b^{5} a
\end{align*}
$$

In fact, the developable surface has another $P S L_{2}$-invariant characterization. Over V_{6}, consider the $S L_{2}$-invariant quadratic form $\mathbf{q} \triangleq(p, p)_{6}$ defined in (2.6). A straightforward computation gives

$$
\begin{equation*}
\mathbf{q}(p) \triangleq 2 X_{0} X_{6}-2 X_{1} X_{5}+2 X_{2} X_{4}-X_{3}^{2}, \quad p \triangleq\left(X_{0}, X_{1}, \cdots, X_{6}\right) \in V_{6} \tag{3.8}
\end{equation*}
$$

Moreover, it is directly checked that \mathbf{q} vanishes on the developable surface, i.e.,

$$
q(p)=0, \quad p \triangleq\left(b_{0}, \cdots, b_{6}\right)
$$

As a result, since the quadric Q_{5} defined by $\mathbf{q}=0$ and \mathcal{H}_{0}^{3} are both $P S L_{2}$-invariant in $\mathbb{P}\left(V_{6}\right)$, the developable surface is precisely $Q_{5} \cap \mathcal{H}_{0}^{3}$, as the former is the only 2-dimensional $P S L_{2}$-invariant orbit,

Remark 3.2. The two orbits of \mathcal{H}_{0}^{3} of dimension >1 are given below:
(1) The open orbit $P S L_{2} \cdot u v\left(u^{4}-v^{4}\right)$ whose isotropy group at $u v\left(u^{4}-v^{4}\right)$ is a finite subgroup of $P S L_{2}$ of order 24 consisting of the following elements $\left(\xi \triangleq e^{2 k \pi \sqrt{-1} / 8}, k \triangleq 0,1, \ldots, 3\right)$:

$$
\begin{array}{cc}
\left(\begin{array}{cc}
\xi & 0 \\
0 & 1 / \xi
\end{array}\right),\left(\begin{array}{cc}
0 & \xi \\
-\xi & 0
\end{array}\right), 1 / \sqrt{2} \cdot\left(\begin{array}{cc}
1 / \xi & -1 / \xi \\
\xi & \xi
\end{array}\right) \\
1 / \sqrt{2} \cdot\left(\begin{array}{cc}
\sqrt{-1} / \xi & -1 / \xi \\
\xi & -\sqrt{-1} \xi
\end{array}\right), 1 / \sqrt{2} \cdot\left(\begin{array}{cc}
-1 / \xi & -1 / \xi \\
\xi & -\xi
\end{array}\right), 1 / \sqrt{2} \cdot\left(\begin{array}{cc}
-\sqrt{-1} / \xi & -1 / \xi \\
\xi & \sqrt{-1} \xi
\end{array}\right)
\end{array}
$$

(2) The 2-dimensional orbit $P S L_{2} \cdot u^{5} v$ whose isotropy group at $u^{5} v$ is

$$
\left\{\left.\left(\begin{array}{cc}
a & 0 \\
0 & 1 / a
\end{array}\right) \right\rvert\, a \in \mathbb{C}^{*}\right\}
$$

For later computational purposes, we prove the following.
Lemma 3.1. Let A be a matrix in $P S L_{2}$. Then

$$
\begin{equation*}
\rho^{4}(A) \cdot\left(E_{0}, E_{1}, \ldots, E_{6}\right)=\left(E_{0}, E_{1}, \ldots, E_{6}\right) \rho^{6}(A) \tag{3.9}
\end{equation*}
$$

where the left-hand side with a dot is the \wedge^{2}-action of $\rho^{4}(A)$ on $V_{6} \subset P\left(\wedge^{2}\left(\mathbb{C}^{5}\right)\right)$ and the right-hand side without a dot is a matrix multiplication.

Proof. Since the Clebsch-Gordon transvectant $\pi \triangleq f \wedge g \rightarrow(f, g)_{1}$ in (2.6) is $P S L_{2^{-}}$ equivariant, we obtain from the commutativity of the diagram

that $\rho^{6}(A): V_{6} \rightarrow V_{6}$ is induced from the \wedge^{2}-action of $\rho^{4}(A)$ (see 2.4).

4. Parameterization of holomorphic 2-spheres of degree 6 in $G(2,5)$

Now that the standard Fano 3-fold \mathcal{H}_{0}^{3} can be realized as the linear section $V_{6} \cap G(2,5)$, and that all other generic linear sections of $G(2,5)$ are $\operatorname{PGL}(5, \mathbb{C})$ projectively equivalent to \mathcal{H}_{0}^{3}, we can parametrize all holomorphic 2 -spheres living in a generic linear section by first parametrizing all such curves that live in \mathcal{H}_{0}^{3}, followed by transforming them to other generic linear sections by the $P G L(5, \mathbb{C})$-action. This will play a central role in the sequel to facilitate the computation when the condition of constant curvature is imposed. We start with the parametrization in \mathcal{H}_{0}^{3}.

We identify the projectivization of the space of 2×2 nonzero (complex) matrices with $\mathbb{C} P^{3}$ by

$$
\iota:\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto[a: b: c: d] .
$$

Via ι, the subset of 2×2 matrices of zero determinant is the following $P S L_{2}$-invariant hyperquadric Q_{2} of dimension 2 ,

$$
\begin{equation*}
Q_{2} \triangleq\left\{[a: b: c: d] \in \mathbb{C} P^{3} \mid a d-b c=0\right\} . \tag{4.1}
\end{equation*}
$$

Note that we can identify $P S L_{2}$ with $\mathbb{C} P^{3} \backslash Q_{2}$.
Lemma 4.1. Let $F: \mathbb{C} P^{1} \rightarrow \mathcal{H}_{0}^{3}$ be a holomorphic 2 -sphere of degree 6 distinct from the standard Veronese curve. Then there exists a holomorphic lift $\psi: \mathbb{C} P^{1} \rightarrow \mathbb{C} P^{3}$, such that $F=f_{i} \circ \psi\left(\right.$ for f_{i}, see (3.5) and (3.7) with $\operatorname{deg} \psi=1$, i.e., that $\operatorname{Im} \psi$ is a projective line in $\mathbb{C} P^{3}$.

Proof. Case 1. Assume that F does not lie in the 2-dimensional orbit $P S L_{2} \cdot u^{5} v$.
Recall the invariant quadric Q_{5} defined by $\mathbf{q}=0$ in (3.8), which cuts the rational normal curve $\gamma \triangleq F\left(\mathbb{C} P^{1}\right)$ of degree 6 in a divisor of degree 12 with support q_{1}, \cdots, q_{l} by Bezout's theorem. Let $p_{i} \triangleq F^{-1}\left(q_{i}\right), 0 \leq i \leq l$.

Consider the complementary set $V \triangleq \mathbb{C} P^{1} \backslash\left\{p_{1}, \ldots, p_{l}\right\} ; F(V)$ lies in the 3-dimensional orbit $Y \triangleq P S L_{2} \cdot u v\left(u^{4}-v^{4}\right)$. Let $U \subset \mathbb{C} P^{3}$ be an irreducible component of the fibered product

$$
U \subset V \times_{Y} P S L_{2} \triangleq\left\{(p, B): F(p)=f_{1}(B)\right\}
$$

with the two standard projections π_{1} and π_{2} onto V and $P S L_{2} \subset \mathbb{C} P^{3}$, respectively. Then U is a unramified covering space of V of some finite covering degree d, by item (1) of Remark 3.2. We extend U to a compact Riemann surface M by monodromy representations [21, p.51], [33, p.92]. Hence, we obtain a commutative diagram

where g extends π_{2} and φ extends $\pi_{1} ; M$ is the desingularization of the closure of $\pi_{2}(U)$ in $\mathbb{C} P^{3}$. Assume that the degree of the curve $g(M)$ equals k in $\mathbb{C} P^{3}$.

In the following, we say that a hypersurface $G=0$ of degree t in $\mathbb{C} P^{6}$ is generic if it does not contain γ and it cuts out a divisor of degree $6 t$ on γ whose support lives in $F(V)$.

A generic hyperplane $H=\sum_{i=0}^{6} c_{i} a_{i}=0$ in $\mathbb{C} P^{6}$ with coordinates $\left[a_{0}: \cdots: a_{6}\right]$ cuts γ in a divisor $D_{H}=z_{1}+\cdots+z_{6}$ with $z_{1}, \ldots, z_{6} \in F(V)$, while f_{1} pulls the hyperplane $H=0$ back to a hypersurface of degree 6 in $\mathbb{C} P^{3}$ that cuts M, via g, in a divisor \mathcal{D} of degree $6 k$ by Bezout's theorem. Since $f_{1} \circ g$ is a covering map of degree d over $F(V)$, or rather, φ is a covering map of degree d over V, whichever is convenient, the divisor \mathcal{D}, via φ, contains the pullback divisor \mathcal{D}_{0} of $F^{*}\left(D_{H}\right)=F^{-1}\left(z_{1}\right)+\cdots+F^{-1}\left(z_{6}\right)$ in $V \subset \mathbb{C} P^{1}$, i.e.,

$$
\mathcal{D}_{0}=(F \circ \varphi)^{*}\left(D_{H}\right)=\phi^{*}\left(F^{-1}\left(z_{1}\right)+\cdots+F^{-1}\left(z_{6}\right)\right),
$$

totaling $6 d$ in number. Write $\mathcal{D} \triangleq \mathcal{D}_{0}+\mathcal{F}$. The remainder \mathcal{F} comes from setting the coordinate functions zero, i.e.,

$$
\begin{equation*}
a_{i} \circ f_{1} \circ g=0, \quad 0 \leq i \leq 6, \tag{4.3}
\end{equation*}
$$

whose support is the base locus of the hypersurface cut $\left(f_{1} \circ g\right)^{*}(H)=0$ on M. We have $\operatorname{deg}(\mathcal{F})=6 k-6 d$ (so, $d \leq k)$.

Recall the invariant quadric $Q_{2} \subset \mathbb{C} P^{3}$ given in (4.1). Let \mathcal{Q} be the pullback divisor of $g^{*}\left(Q_{2}\right)=0$ on M. We have $\operatorname{deg}(\mathcal{Q})=2 k$, again by Bezout's theorem.
Sublemma 4.1. $\mathcal{F} \leq \mathcal{Q}$. In particular, $k \leq 3 d / 2$.
Proof. Recall the quadratic form \mathbf{q} in (3.8). Via f_{1} we have the remarkable $S L_{2}$-invariant identity

$$
\begin{equation*}
2 a_{0} a_{6}-2 a_{1} a_{5}+2 a_{2} a_{4}-a_{3}^{2}=(a d-b c)^{6}, \tag{4.4}
\end{equation*}
$$

where $a_{0}, \cdots a_{6}$ are given in (3.5).
Let p be in the support of \mathcal{F}. In light of (4.4), we assert immediately by (4.3) that $g(p) \in Q_{2}$. (In fact, \mathcal{F} is supported over a subset of p_{1}, \cdots, p_{l} whose images via g lie in six lines contained in Q_{2} when one solves $a_{i}=0,0 \leq i \leq 6$, by (3.5).)

Multiplying by a matrix on the left, we may assume that

$$
g(p)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \text { or }\left(\begin{array}{cc}
1 & m \\
0 & 0
\end{array}\right) \text { or }\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),
$$

where $m^{4}=1$, while multiplying the isotropy group on the right (see Remark 3.2, we may further assume that $g(p)=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$. Hence, $\operatorname{ord}_{p}(a)<\min \left\{\operatorname{ord}_{p}(b), \operatorname{ord}_{p}(c), \operatorname{ord}_{p}(d)\right\}$. $\left(\operatorname{ord}_{p}\right.$ denotes the local holomorphic vanishing order at p.)

Subcase 1: If $\operatorname{ord}_{p}(d) \geq \operatorname{ord}_{p}(b)$, then since locally $b^{4} \neq b$ lest a_{6} in (3.5) would be identically zero to violate the nondegeneracy of γ in $\mathbb{C} P^{6}$, we obtain

$$
\operatorname{ord}_{p} \mathcal{F} \leq \operatorname{ord}_{p}\left(a_{6}\right)=\operatorname{ord}_{p}(b) \leq \operatorname{ord}_{p}(a d-b c) .
$$

Subcase 2: If $\operatorname{ord}_{p}(d)<\operatorname{ord}_{p}(b)$, by $a_{5}=d\left(b^{4}+\left(b^{5} / d\right) c-6 a^{5}\right)-5 d a^{4}(a-(b / d) c)$ we see

$$
\operatorname{ord}_{p} \mathcal{F}=\operatorname{ord}_{p}(d)=\operatorname{ord}_{p}(a d-b c) .
$$

The first statement follows. In particular, $6 k-6 d=\operatorname{deg}(\mathcal{F}) \leq 2 k$ so that $k \leq 3 d / 2$.

Lastly, we show that $d=1$ to force $k=1$ by Sublemma 4.1. To this end, notation as above, recall that γ, being a rational normal curve, is an extremal curve in the sense of Castelnuovo so that it is projectively normal [1, p.117, p.140], [33, pp.230-231], i.e., that for all $t \in \mathbb{N}$, any divisor in the complete linear system $\left|t D_{H}\right|$ on γ is obtained by cutting γ by a hypersurface in $\mathbb{C} P^{6}$ of degree t not containing γ; the (projective) dimension of the space of all these hypersurfaces, modulo the ones containing γ, is thus $6 t$.

Now, any generic hypersurface $G=0$ of degree t in $\mathbb{C} P^{6}$ cuts γ in $6 t$ points $w_{1}, \ldots, w_{6 t} \in$ $F(V)$, so that $G=0$ is pulled back via f_{1} to a hypersurface of degree $6 t$ in $\mathbb{C} P^{3}$ that cuts M via g in a divisor $\mathcal{D}_{t, G}$ of degree $6 t k$ on M by Bezout's theorem, for which $6 t d$ points constitute the "moving" part $\mathcal{D}_{t, G}^{(m)}$ consisting of the pullback, via φ, of $F^{-1}\left(w_{1}\right), \cdots, F^{-1}\left(w_{6 t}\right) \in$ V, and the "fixed" part $\mathcal{D}_{t, G}^{(f)}$ that is supported over that of \mathcal{F} and thus equals $t \mathcal{F}$ (see the remark immediately following the proof) as it is assumed by the (generic) hypersurface $H^{t}=0$ of degree t, so that

$$
D_{t, G}=D_{t, G}^{(m)}+t \mathcal{F} \sim t \mathcal{D}=t \mathcal{D}_{0}+t \mathcal{F} .
$$

Therefore, $\mathcal{D}_{t, G}^{(m)}$ is in the complete linear system $\left|t \mathcal{D}_{0}\right|$, giving rise to a meromorphic function of degree $6 t d$ in $\mathcal{L}\left(t \mathcal{D}_{0}\right)$, which consists of all meromorphic functions on M whose polar divisors are no greater than $t \mathcal{D}_{0}$.

Conversely, suppose we are given a generic meromorphic function $h \in \mathcal{L}\left(t \mathcal{D}_{0}\right)$ of degree $6 t d$ in the sense that its zero divisor lives in $\varphi^{-1}(V)$. Define

$$
h^{*}(x) \triangleq \Pi_{y \in \varphi^{-1}(x)} h(y)^{\mu_{y}}
$$

where μ_{y} is the ramification index of φ at y. This is a well-defined meromorphic function of degree $6 t$ over $\mathbb{C} P^{1}$ [1, p.281] whose polar divisor is $F^{*}\left(t D_{H}\right)$ on V, and whose zero divisor is cut out by a generic hypersurface $G=0$ of degree $6 t$ by projective normality of γ. It follows from the discussion of the preceding paragraph that h assumes $t \mathcal{D}_{0}$ as the polar divisor and $\mathcal{D}_{t, G}^{(m)}$ as the zero divisor. We therefore conclude that the generic part of the complete linear system $\left|t \mathcal{D}_{0}\right|$ is exactly $\left\{\mathcal{D}_{t, G}\right\}$, and thus $\operatorname{dim}\left(\left|t \mathcal{D}_{0}\right|\right)=6 t$, or, $\operatorname{dim}\left(\mathcal{L}\left(t \mathcal{D}_{0}\right)\right)=6 t+1$.

By the Riemann-Roch theorem $\operatorname{dim}\left(\mathcal{L}\left(t \mathcal{D}_{0}\right)\right) \geq 1+\operatorname{deg}\left(t \mathcal{D}_{0}\right)-g(M)$, or, $6 t+1 \geq 1+$ $6 t d-g(M)$ so that $g(M) \geq 6 t(d-1)$ for all $t \in \mathbb{N}$. It follows that $d=1$ and so φ is bijective. We define $\psi \triangleq g \circ(\varphi)^{-1}$. Since $k=1$ as $k \leq 3 d / 2$, we see $\psi\left(\mathbb{C} P^{1}\right)$ is a line in $\mathbb{C} P^{3}$.
Remark 4.1. Since genericity of hypersurfaces of degree t is a Zariski open condition among all hypersurfaces of degree t in $\mathbb{C} P^{6}$, they form a connected set. On the other hand, for a generic hypersurface $G=0$, the fixed part $\mathcal{D}_{t, G}^{(f)}$ is of degree $2(k-d)$ and is supported over that of \mathcal{F}. Meanwhile, for any support point p of \mathcal{F}, the map $G \mapsto \operatorname{ord}_{p}(G)$ is upper semicontinuous, so that it stays constant among the generic hypersurfaces.
Case 2. Assume that F lies in the 2-dimensional orbit. Let $\gamma \triangleq F\left(\mathbb{C} P^{1}\right)$ intersects the third orbit $P S L_{2} \cdot u^{6}$ at points r_{1}, \ldots, r_{j}. Consider $W \triangleq \gamma \backslash\left\{r_{1}, \ldots, r_{j}\right\}$. By item (2) of Remark 3.2, the restriction of $P S L_{2}$ over W is a principal \mathbb{C}^{*}-bundle and so it is a trivial one, since the associated line bundle over W is trivial [21, p.229]. It follows that we obtain a lift

Note that $b_{0}, b_{1}, \ldots, b_{6}$ are homogeneous of bidegree $(1,5)$ in (a, c) and (b, d), respectively. We assume that a, b, c, d are polynomials of an affine coordinate z.

Sublemma 4.2. None of a, b, c, d are identically zero as γ is nondegenerate in $\mathbb{C} P^{6}$, from which there induce two holomorphic maps

$$
\begin{aligned}
& \phi_{1}: \mathbb{C} P^{1} \rightarrow \mathbb{C} P^{1}, z \mapsto[a: c], \\
& \phi_{2}: \mathbb{C} P^{1} \rightarrow \mathbb{C} P^{1}, z \mapsto[b: d] .
\end{aligned}
$$

We have $\operatorname{deg}(F)=\operatorname{deg}\left(\phi_{1}\right)+5 \operatorname{deg}\left(\phi_{2}\right)$. Moreover, if $\operatorname{deg}(F)=6$, then $\left(\operatorname{deg}\left(\phi_{1}\right), \operatorname{deg}\left(\phi_{2}\right)\right)=$ $(1,1)$, and there exist $B \in S L_{2}$ and nonzero polynomials f, g of z, such that

$$
\phi=B \cdot A(z) \cdot \operatorname{diag}\{f, g\},
$$

where $A: \mathbb{C} P^{1} \rightarrow \mathbb{C} P^{3}$ is of degree 1, i.e., A is a line.
Proof. Set $f \triangleq \operatorname{gcd}(a, c)$ and $g \triangleq \operatorname{gcd}(b, d)$. Note that

$$
(A \cdot \operatorname{diag}\{f, g\}) \cdot u^{5} v=A \cdot\left(f g^{5}\right) u^{5} v=A \cdot u^{5} v
$$

after projectivizing. We may thus assume that $\operatorname{gcd}(a, c)=\operatorname{gcd}(b, d)=1$. ϕ_{1} and ϕ_{2} define, respectively, the polar divisors

$$
D^{\phi_{1}}=\max \{\operatorname{deg} a, \operatorname{deg} c\} \cdot \infty, \quad D^{\phi_{2}}=\max \{\operatorname{deg} b, \operatorname{deg} d\} \cdot \infty .
$$

We give two claims:
Claim 1: for every $p \in \mathbb{C}, b_{0}, b_{1}, \ldots, b_{6}$, given in (3.7), do not vanish simultaneously; hence $\operatorname{ord}_{p} F=0$.

Claim 2: $\operatorname{ord}_{\infty}(F)=\max \{\operatorname{deg} a, \operatorname{deg} c\}+5 \max \{\operatorname{deg} b, \operatorname{deg} d\}$.
Therefore, summing up the local vanishing orders gives $\operatorname{deg}(F)=\operatorname{deg}\left(\phi_{1}\right)+5 \operatorname{deg}\left(\phi_{2}\right)$.
Proof of Claim 1: Note that if $b_{i}(p)=0, i=0,1, \ldots, 6$, at $p \in \mathbb{C}$, then we have

$$
\psi(p)=\left(\begin{array}{ll}
a(p) & 0 \\
c(p) & 0
\end{array}\right) \text { or }\left(\begin{array}{ll}
0 & b(p) \\
0 & d(p)
\end{array}\right) .
$$

(Since a, b, c, d have no common factors, at least one of them does not vanish.) Hence, $z-p$ is a common factor of b and d, or a and c, respectively, contradictory to that these two pairs are without common factors.
Proof of Claim 2: Since b_{i} are homogeneous of bidegree $(1,5)$ in (a, c) and (b, d), respectively, we have $\operatorname{ord}_{\infty}(F) \leq \max \{\operatorname{deg} a, \operatorname{deg} c\}+5 \max \{\operatorname{deg} b, \operatorname{deg} d\}$. For the opposite direction, we divide it into two subcases. Multiplying a matrix from the left by interchanging the rows, we may assume that $\operatorname{deg}(a) \geq \operatorname{deg}(c)$.
(Subcase 1) If $\operatorname{deg}(a) \geq \operatorname{deg}(c)$ and $\operatorname{deg}(b) \geq \operatorname{deg}(d)$, then

$$
\operatorname{ord}_{\infty} F \geq \operatorname{deg}\left(b_{6}\right)=\operatorname{deg}(a)+5 \operatorname{deg}(b)=\max \{\operatorname{deg} a, \operatorname{deg} c\}+5 \max \{\operatorname{deg} b, \operatorname{deg} d\},
$$

whence the identity.
(Subcase 2) If $\operatorname{deg}(a) \geq \operatorname{deg}(c)$ and $\operatorname{deg}(b)<\operatorname{deg}(d)$, then

$$
\operatorname{ord}_{\infty}(F) \geq \operatorname{deg}\left(b_{1}\right)=\operatorname{deg}(a)+5 \operatorname{deg}(d)=\max \{\operatorname{deg} a, \operatorname{deg} c\}+5 \max \{\operatorname{deg} b, \operatorname{deg} d\}
$$

whence the identity.
It breaks down to two subcases for $\operatorname{deg}(\psi)=6$.
(Subcase 1') If $\left(\operatorname{deg}\left(\phi_{1}\right), \operatorname{deg}\left(\phi_{2}\right)\right)=(1,1)$, then after extracting the common factors, we have

$$
\operatorname{deg}\left(\phi_{1}\right)=\max \{\operatorname{deg} a, \operatorname{deg} c\}=1, \operatorname{deg}\left(\phi_{2}\right)=\max \{\operatorname{deg} b, \operatorname{deg} d\}=1,
$$

and we are done.
(Subcase 2') If $\left(\operatorname{deg}\left(\phi_{1}\right), \operatorname{deg}\left(\phi_{2}\right)\right)=(6,0)$, then after extracting the common factors, we obtain

$$
\operatorname{deg}\left(\phi_{1}\right)=\max \{\operatorname{deg} a, \operatorname{deg} c\}=6, \operatorname{deg}\left(\phi_{2}\right)=\max \{\operatorname{deg} b, \operatorname{deg} d\}=0 .
$$

Multiplying a nondegenerate matrix from the left, we may assume that $b=0$. This contradicts that b is not identically zero.

Thanks to this lemma, every holomorphic 2 -sphere of degree 6 in $V_{6} \cap G(2,5)$ corresponds to a line in $\mathbb{C} P^{3}$, a geometric object that is considerably easier to control.
Lemma 4.2. Let ψ be a projective line in $\mathbb{C} P^{3}$ that does not lie in Q_{2}. Then only one of the following two cases occurs.
(1) ψ intersects Q_{2} transversally in two distinct points. Then up to a Möbius transformation, there exist $C \in S L_{2}$ and $B \in G L(2, \mathbb{C})$ such that, up to projectivization,

$$
\psi(z)=C\left(\begin{array}{ll}
z & 0 \tag{4.6}\\
0 & 1
\end{array}\right) B
$$

We call this case the transversal case.
(2) ψ is tangent to Q_{2} at a point. Then up to a Möbius transformation, there exist $C \in S L_{2}$ and $B \in G L(2 ; \mathbb{C})$ such that, up to projectivization,

$$
\psi(z)=C\left(\begin{array}{cc}
1 & \mu z \tag{4.7}\\
0 & 1
\end{array}\right) B
$$

where $\mu \neq 0$ is a complex number. We call this case the tangential case.
Proof. For the transversal case, choose a parametrization z of $\mathbb{C} P^{1}$ such that $\psi(0), \psi(\infty) \in$ Q_{2}, and $\psi(z)=\psi(0)+z \psi(\infty) \in \mathbb{C} P^{3} \backslash Q_{2}$ for $z \neq\{0, \infty\}$. Since $\psi(\infty) \in Q_{2}$, there exists a $U_{0} \in S U(2)$ such that $\psi(\infty)=U_{0} \cdot\left(\begin{array}{cc}a_{1} & b_{1} \\ 0 & 0\end{array}\right)$. Assume $\psi(0)=U_{0} \cdot\left(\begin{array}{cc}a_{0} & b_{0} \\ c_{0} & d_{0}\end{array}\right) \in Q_{2}$. Since ψ does not lie in Q_{2}, we have $\left(c_{0}, d_{0}\right) \neq(0,0)$ and $\left(a_{0}, b_{0}\right)=\lambda\left(c_{0}, d_{0}\right)$ for some constant $\lambda \in \mathbb{C}$. Hence,

$$
\psi(z)=U_{0} \cdot\left(\begin{array}{cc}
\lambda c_{0}+a_{1} z & \lambda d_{0}+b_{1} z \\
c_{0} & d_{0}
\end{array}\right)=U_{0} \cdot\left(\begin{array}{cc}
1 & \lambda \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
z & 0 \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
a_{1} & b_{1} \\
c_{0} & d_{0}
\end{array}\right)
$$

and $a_{1} d_{0}-b_{1} c_{0} \neq 0$. Then (4.6) follows from setting $C \triangleq U_{0} \cdot\left(\begin{array}{ll}1 & \lambda \\ 0 & 1\end{array}\right)$ and $B \triangleq\left(\begin{array}{ll}a_{1} & b_{1} \\ c_{0} & d_{0}\end{array}\right)$.
For the tangential case, choose a parametrization z of $\mathbb{C} P^{1}$, such that $\psi(\infty) \in Q_{2}$ is the tangent point, and $\psi(z)=\psi(0)+z \psi(\infty) \in \mathbb{C} P^{3} \backslash Q_{2}$ for $z \neq \infty$. Since $\psi(\infty) \in Q_{2}$, there exists a $U_{1} \in S U(2)$, such that $\psi(\infty)=U_{1} \cdot\left(\begin{array}{cc}a_{1} & b_{1} \\ 0 & 0\end{array}\right)$. Assume $\psi(0)=U_{1} \cdot\left(\begin{array}{cc}a_{0} & b_{0} \\ c_{0} & d_{0}\end{array}\right)$, where $a_{0} d_{0}-b_{0} c_{0} \neq 0$. Since ψ intersects Q_{2} at the double point $\psi(\infty)$, we have $\left(a_{1}, b_{1}\right)=\mu\left(c_{0}, d_{0}\right)$, for some $\mu \neq 0$. Hence

$$
\psi(z)=U_{1} \cdot\left(\begin{array}{cc}
a_{0}+\mu c_{0} z & b_{0}+\mu d_{0} z \\
c_{0} & d_{0}
\end{array}\right)=U_{1} \cdot\left(\begin{array}{cc}
1 & \mu z \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
a_{0} & b_{0} \\
c_{0} & d_{0}
\end{array}\right)
$$

where $\mu\left(a_{0} d_{0}-b_{0} c_{0}\right) \neq 0$. By setting $C \triangleq U_{1}$ and $B \triangleq\left(\begin{array}{ll}a_{0} & b_{0} \\ c_{0} & d_{0}\end{array}\right)$, we have (4.7).

Corollary 4.1. Every holomorphic 2 -sphere of degree 6 in the standard Fano 3 -fold \mathcal{H}_{0}^{3} can be parametrized as one of the following.
(1) $\psi(z) \cdot p$, where $\psi(z)$ is a line in $\mathbb{C} P^{3}$ in the form (4.6), and $p=u v\left(u^{4}-v^{4}\right)$ or $u^{5} v$.
(2) $\psi(z) \cdot p$, where $\psi(z)$ is a line in $\mathbb{C} P^{3}$ in the form (4.7), and $p=u v\left(u^{4}-v^{4}\right)$ or $u^{5} v$.
(3) The Veronese curve, namely, the 1-dimensional orbit $P S L_{2} \cdot u^{6}$.

We need only consider the first two cases in the sequel.
Recall that a smooth holomorphic 2 -sphere of degree 6 in $G(2,5)$ necessarily lives in a codimension 3 linear section of $G(2,5)$. Henceforth, we call the 2 -sphere generic if the 6 plane spanned by it is generic. It follows from Theorem 3.1 and Corollary 4.1 that these generic 2 -spheres can be parameterized as follows.

Proposition 4.1. Let F be a generic holomorphic 2 -sphere of degree 6 in $G(2,5)$. If it is irreducible, then up to the action of $U(5)$ and a reparametrization of $\mathbb{C} P^{1}$, F can be parameterized as

$$
\begin{equation*}
A \cdot\left(E_{0}, E_{1}, \ldots, E_{6}\right) L Z_{6}(z), \tag{4.8}
\end{equation*}
$$

where $A \in G L(5, C)$ is a lower-triangular matrix, $\left\{E_{0}, \ldots, E_{6}\right\}$ is the orthonormal basis of V_{6} defined in (3.3), Z_{6} is the Veronese 2-sphere in 2.8), and $L \in G L(7, \mathbb{C})$ is a lowertriangular matrix given as follows.
(1) (Transversal case) $L=\operatorname{diag}\left\{\omega_{0}, \omega_{1}, \ldots, \omega_{6}\right\}$, where

$$
\left[\omega_{0}: \sqrt{6} \omega_{1}: \sqrt{15} \omega_{2}: \sqrt{20} \omega_{3}: \sqrt{15} \omega_{4}: \sqrt{6} \omega_{5}: \omega_{6}\right] \in P S L_{2} \cdot u v\left(u^{4}-v^{4}\right) \sqcup P S L_{2} \cdot u^{5} v
$$

satisfies

$$
\begin{align*}
& \omega_{0} \omega_{4}-4 \omega_{1} \omega_{3}+3 \omega_{2}^{2}=0, \quad \omega_{0} \omega_{5}-3 \omega_{1} \omega_{4}+2 \omega_{2} \omega_{3}=0, \quad \omega_{0} \omega_{6}-9 \omega_{2} \omega_{4}+ \\
& 8 \omega_{3}^{2}=0, \quad \omega_{2} \omega_{6}-4 \omega_{3} \omega_{5}+3 \omega_{4}^{2}=0, \quad \omega_{1} \omega_{6}-3 \omega_{2} \omega_{5}+2 \omega_{3} \omega_{4}=0 . \tag{4.9}
\end{align*}
$$

(2) (Tangential case)

$$
L=\left(\begin{array}{ccccccc}
1 \tag{4.10}\\
\tau_{1} \sqrt{6} & -\mu \tau_{0} & 0 & 0 & 0 & 0 & 0 \\
\tau_{2} \sqrt{15} & -\mu \tau_{1} \sqrt{10} & \mu^{2} \tau_{0} & 0 & 0 & 0 & 0 \\
2 \tau_{3} \sqrt{5} & -\mu \tau_{2} \sqrt{30} & 2 \mu^{2} \tau_{1} \sqrt{3} & -\mu^{3} \tau_{0} & 0 & 0 & 0 \\
\tau_{4} \sqrt{15} & -2 \mu \tau_{3} \sqrt{10} & 6 \mu^{2} \tau_{2} & -2 \mu^{3} \tau_{1} \sqrt{3} & \mu^{4} \tau_{0} & 0 & 0 \\
\tau_{5} \sqrt{6} & -5 \mu \tau_{4} & 2 \mu^{2} \tau_{3} \sqrt{10} & -\mu^{3} \tau_{2} \sqrt{30} & \mu^{4} \tau_{1} \sqrt{10} & -\mu^{5} \tau_{0} & 0 \\
\tau_{6} & -\mu \tau_{5} \sqrt{6} & \mu^{2} \tau_{4} \sqrt{15} & -2 \mu^{3} \tau_{3} \sqrt{5} & \mu^{4} \tau_{2} \sqrt{15} & -\mu^{5} \tau_{1} \sqrt{6} \mu^{6} \tau_{0}
\end{array}\right),
$$

where

$$
\left[\tau_{0}: \sqrt{6} \tau_{1}: \sqrt{15} \tau_{2}: \sqrt{20} \tau_{3}: \sqrt{15} \tau_{4}: \sqrt{6} \tau_{5}: \tau_{6}\right] \in P S L_{2} \cdot u v\left(u^{4}-v^{4}\right) \sqcup P S L_{2} \cdot u^{5} v
$$

with the same constraints (4.9), replacing ω_{i} by τ_{i}.
Proof. Assume \mathcal{H}^{3} is the generic linear section where F lives. It follows from Theorem 3.1 that there exists a $G \in G L(5, \mathbb{C})$, such that $\mathcal{H}^{3}=G\left(\mathcal{H}_{0}^{3}\right)$. Then $G^{-1} \circ F$ is a holomorphic 2sphere of degree 6 in \mathcal{H}_{0}^{3}. Consequently, by Corollary $4.1, G^{-1} \circ F$ is lifted to a projective line ψ in $\mathbb{C} P^{3}$, which is parameterized as in (4.6) or 4.7), according to the type of intersection of $\psi \cap Q_{2}$.

Transversal case: From (1) in Corollary 4.1, we obtain that

$$
G^{-1} \circ F=C\left(\begin{array}{ll}
z & 0 \tag{4.11}\\
0 & 1
\end{array}\right) B \cdot p,
$$

where $p=u v\left(u^{4}-v^{4}\right)$ or $u^{5} v$. Under the basis $\left\{E_{0}, \ldots, E_{6}\right\}$, we denote the coordinates of $B \cdot p$ by

$$
\left[\omega_{0}: \sqrt{6} \omega_{1}: \sqrt{15} \omega_{2}: \sqrt{20} \omega_{3}: \sqrt{15} \omega_{4}: \sqrt{6} \omega_{5}: \omega_{6}\right]^{t} \in P S L_{2} \cdot u v\left(u^{4}-v^{4}\right) \cup P S L_{2} \cdot u^{5} v
$$

In particular, we derive (4.9) by (2.7). Now, $G^{-1} \circ F$ equals

$$
\begin{aligned}
& \left(E_{0}, \ldots, E_{6}\right) \rho^{6}(C) \rho^{6}\left(\left(\begin{array}{cc}
z & 0 \\
0 & 1
\end{array}\right)\right)\left(\omega_{0}, \sqrt{6} \omega_{1}, \sqrt{15} \omega_{2}, \sqrt{20} \omega_{3}, \sqrt{15} \omega_{4}, \sqrt{6} \omega_{5}, \omega_{6}\right)^{t} \\
& =\rho^{4}(C) \cdot\left(E_{0}, \ldots, E_{6}\right) \rho^{6}\left(\left(\begin{array}{ll}
z & 0 \\
0 & 1
\end{array}\right)\right)\left(\omega_{0}, \sqrt{6} \omega_{1}, \sqrt{15} \omega_{2}, \sqrt{20} \omega_{3}, \sqrt{15} \omega_{4}, \sqrt{6} \omega_{5}, \omega_{6}\right)^{t} \\
& =\rho^{4}(C) \cdot\left(E_{0}, \ldots, E_{6}\right) \operatorname{diag}\left\{\omega_{0}, \ldots, \omega_{6}\right\} Z_{6}(z) .
\end{aligned}
$$

Note that we have used Lemma 3.1 at the second equality. It follows from the QRdecomposition that $G \rho^{4}(C)=U A$, where $U \in U(5)$ and $A \in G L(5)$ is a lower-triangular matrix. As a result,

$$
U^{-1} \circ F=A \cdot\left(E_{0}, \ldots, E_{6}\right) \operatorname{diag}\left\{\omega_{0}, \ldots, \omega_{6}\right\} Z_{6}(z)
$$

Tangential case: By (2) in Corollary 4.1, it yields that

$$
G^{-1} \circ F=C\left(\begin{array}{cc}
1 & \mu z \tag{4.12}\\
0 & 1
\end{array}\right) B \cdot p
$$

where $p=u v\left(u^{4}-v^{4}\right)$ or $u^{5} v$. Under the basis $\left\{E_{0}, \ldots, E_{6}\right\}$, we denote the coordinates of $B \cdot p$ by

$$
\left[\tau_{0}: \sqrt{6} \tau_{1}: \sqrt{15} \tau_{2}: \sqrt{20} \tau_{3}: \sqrt{15} \tau_{4}: \sqrt{6} \tau_{5}: \tau_{6}\right]^{t}
$$

Similarly to the transversal case, $G^{-1} \circ F$ equals

$$
\begin{aligned}
& \left(E_{0}, \ldots, E_{6}\right) \rho^{6}(C) \rho^{6}\left(\left(\begin{array}{cc}
1 & \mu z \\
0 & 1
\end{array}\right)\right)\left(\tau_{0}, \sqrt{6} \tau_{1}, \sqrt{15} \tau_{2}, \sqrt{20} \tau_{3}, \sqrt{15} \tau_{4}, \sqrt{6} \tau_{5}, \tau_{6}\right)^{t} \\
& =\rho^{4}(C) \cdot\left(E_{0}, \ldots, E_{6}\right) L Z_{6}(z),
\end{aligned}
$$

where L is the lower triangular matrix prescribed in (4.10). The conclusion follows from using the QR-decomposition to $G \rho^{4}(C)$.

Holomorphicity imposes strong restrictions on ramified points.
Corollary 4.2. Let F be a generic holomorphic 2 -sphere of degree 6 in $G(2,5)$. If F is irreducible, then it has at most two ramified points (without counting multiplicity). Moreover,
(1) if F is parametrized in the transversal case, then F has two distinct ramified points, and,
(2) if F is parametrized in the tangential case, then F has only one ramified point.

Proof. Though it is possible to give a conceptual proof for this fact in projective geometry, we choose to adopt a computational approach to illustrate the representation aspect of the undertaking for the sake of its brevity.

Without losing generality, we may assume $A=I_{5}$ in 4.8) by projective equivalence.

Case 1 (Transversal case): By item (1) in Proposition 4.1 and (3.3), one can show that $\partial F / \partial z \wedge \partial F / \partial z(z)$ equals

$$
\begin{align*}
& -24 \sqrt{6} f_{0} z^{2} e_{0} \wedge e_{1} \wedge e_{2} \wedge e_{3}-24 \sqrt{6} f_{1} z^{3} e_{0} \wedge e_{1} \wedge e_{2} \wedge e_{4}-144 f_{2} z^{4} e_{0} \wedge \\
& e_{1} \wedge e_{3} \wedge e_{4}+12 \sqrt{6} f_{3} z^{5} e_{0} \wedge e_{2} \wedge e_{3} \wedge e_{4}+24 \sqrt{6} f_{4} z^{6} e_{1} \wedge e_{2} \wedge e_{3} \wedge e_{4}, \tag{4.13}
\end{align*}
$$

Observe that at least one of f_{i} does not vanish by the irreducibility of $F\left(f_{0}, \cdots, f_{4}\right.$ are quadratic in $\omega_{0}, \cdots, \omega_{6}$). As a result, 4.13) implies that only $z=0$ or ∞ (by taking $z=1 / w$ in the latter case) are ramified points of F. Note that $\{F(0), F(\infty)\}$ is exactly $\operatorname{Im} F \cap P S L_{2} \cdot u^{6}$.

Case 2 (Tangential case): By item (2) in Proposition 4.1 and (3.3), $\partial F / \partial z \wedge \partial F / \partial z(z)$ equals

$$
\begin{align*}
& -24 \sqrt{6} \mu^{2} g_{0} e_{0} \wedge e_{1} \wedge e_{2} \wedge e_{3}+24 \sqrt{6} \mu^{2}\left(2 \mu g_{0} z-g_{1}\right) e_{0} \wedge e_{1} \wedge e_{2} \wedge e_{4} \\
& -144 \mu^{2}\left(\mu^{2} g_{0} z^{2}-\mu g_{1} z+g_{2}\right) e_{0} \wedge e_{1} \wedge e_{3} \wedge e_{4} \\
& +48 \sqrt{6} \mu^{2}\left(\mu^{3} g_{0} z^{3}-\frac{3 \mu^{2} g_{1}}{2} z^{2}+3 \mu g_{2} z+\frac{g_{3}}{4}\right) e_{0} \wedge e_{2} \wedge e_{3} \wedge e_{4} \tag{4.14}\\
& -24 \sqrt{6} \mu^{2}\left(\mu^{4} g_{0} z^{4}-2 \mu^{3} g_{1} z^{3}+6 \mu^{2} g_{2} z^{2}+\mu g_{3} z-g_{4}\right) e_{1} \wedge e_{2} \wedge e_{3} \wedge e_{4} .
\end{align*}
$$

Note that $\mu \neq 0$ and g_{0}, \cdots, g_{4} are quadratic in $\tau_{0}, \cdots, \tau_{6}$. Again, one of g_{i} does not vanish to avoid reducibility. Consequently, (4.14) implies that F does not have ramified points in the affine plane \mathbb{C}, and so ∞ (by taking $z=1 / w$) is the unique ramified point. Note that $F(\infty)$ is the unique point of intersection of $\operatorname{Im} F \cap P S L_{2} \cdot u^{6}$.

5. Necessity of generic holomorphic 2-spheres to be of constant curvature

Exploring parameterizations given in the preceding section, we will show in this section that a generic constantly curved holomorphic 2 -sphere of degree 6 can only live in the Fano 3 -folds \mathcal{H}^{3} that differ from the standard \mathcal{H}_{0}^{3} by a diagonal transformation in $G L\left(5, \mathbb{C}^{5}\right)$, up to $U(5)$-equivalence.
Definition 5.1. By the diagonal family we mean constantly curved holomorphic 2 -spheres of degree 6 parametrized as in Case (1) of Proposition 4.1, where $A \triangleq \operatorname{diag}\left(a_{00}, \cdots, a_{44}\right)$ is a diagonal matrix and the columns of

$$
\begin{equation*}
A \cdot\left(E_{0}, E_{1}, \ldots, E_{6}\right) \operatorname{diag}\left\{\omega_{0}, \omega_{1}, \ldots, \omega_{6}\right\} \tag{5.1}
\end{equation*}
$$

are mutually orthogonal and all of unit length.
Given a lower-triangular matrix $A \in G L(5 ; \mathbb{C})$, by the definition of \wedge^{2}-action it follows from (3.3) that $C \triangleq A \cdot\left(E_{0}, E_{1}, E_{2}, E_{3}, E_{4}, E_{5}, E_{6}\right)$ is of the form

$$
C=\left(\begin{array}{lllllll}
C_{00} & 0 & 0 & 0 & 0 & 0 & 0 \tag{5.2}\\
C_{10} & C_{11} & 0 & 0 & 0 & 0 & 0 \\
C_{20} & C_{21} & 0 \\
C_{30} & C_{20} & 0 & 0 & 0 & 0 \\
C_{30} & C_{31} & C_{32} & C_{33} & 0 & 0 & 0 \\
C_{40} & 0 \\
C_{50} & C_{51} C_{42} & 0 & 0 & 0 & 0 \\
C_{60} & C_{66} & C_{62} & C_{53} & 0 & 0 & 0 \\
C_{70} & C_{63} & C_{64} & 0 & 0 \\
C_{70} & C_{78} C_{22} & C_{73} C_{74} & 0 & 0 \\
C_{90} & C_{81} & C_{82} & C_{83} & C_{84} & C_{51} & 0 \\
C_{92} & C_{93} & C_{94} & C_{95} & C_{96}
\end{array}\right),
$$

which is a 10×7 matrix obtained by column vectors $A \cdot E_{k}$ written relative to the standard basis $e_{i} \wedge e_{j}, 0 \leq i<j \leq 4$, in the lexicographic order. We point out that $C_{i j}$ are quadratic in terms of the entries of A.

The following two lemmas are important.

Lemma 5.1. Let G be a 10×7 matrix of rank 7 in the form as on the right-hand side of (5.2) with $G_{33} G_{53} G_{64} G_{74} \neq 0$, and the column vectors of G are mutually orthogonal. If the holomorphic 2-sphere $\gamma(z) \triangleq G Z_{6}(z)$ lies in $G(2,5)$ and is generic, then G is in the form

$$
\left(\begin{array}{ccccccc}
G_{00} & 0 & 0 & 0 & 0 & 0 & 0 \tag{5.3}\\
0 & G_{11} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & G_{22} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & G_{33} & 0 & 0 & 0 \\
0 & 0 & G_{42} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & G_{53} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & G_{64} & 0 & 0 \\
0 & 0 & 0 & 0 & G_{74} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & G_{85} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & G_{96}
\end{array}\right)
$$

where γ is ramified at $z=0$ and $z=\infty$.
Proof. If (5.3) holds, then the last statement follows from $\gamma^{\prime}(0)=e_{0} \wedge e_{2} \in G(2,5)$ and $\gamma^{\prime}(\infty)=e_{2} \wedge e_{4} \in G(2,5)$. Hence, we need only prove (5.3) in the following. Since the first five columns of G are perpendicular to the last two, we have

$$
\gamma(z)=\left(\begin{array}{ccccccc}
G_{00} & 0 & 0 & 0 & 0 & 0 & 0 \\
G_{10} & G_{11} & 0 & 0 & 0 & 0 & 0 \\
G_{20} & G_{21} & G_{22} & 0 & 0 & 0 & 0 \\
G_{30} & G_{31} & G_{32} & G_{33} & 0 & 0 & 0 \\
G_{40} & G_{41} & G_{42} & 0 & 0 & 0 & 0 \\
G_{50} & G_{51} & G_{52} & G_{53} & 0 & 0 & 0 \\
G_{60} & G_{61} & G_{62} G_{63} & G_{64} & 0 & 0 \\
G_{70} & G_{71} & G_{72} & G_{73} & G_{74} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}\right.
$$

We denote by $\left\{\gamma_{j} \mid j=0, \ldots, 9\right\}$ the coordinates of γ. Then it is easy to see

$$
\begin{aligned}
& \operatorname{deg}\left(\gamma_{0}\right)=0, \operatorname{deg}\left(\gamma_{1}\right) \leq 1, \operatorname{deg}\left(\gamma_{2}\right) \leq 2, \operatorname{deg}\left(\gamma_{3}\right) \leq 3, \operatorname{deg}\left(\gamma_{4}\right) \leq 2, \\
& \operatorname{deg}\left(\gamma_{5}\right) \leq 3, \operatorname{deg}\left(\gamma_{6}\right) \leq 4, \operatorname{deg}\left(\gamma_{7}\right) \leq 4, \operatorname{deg}\left(\gamma_{8}\right)=5, \operatorname{deg}\left(\gamma_{9}\right)=6 .
\end{aligned}
$$

It follows from that γ lies in $G(2,5)$ that

$$
\begin{align*}
& \gamma_{2} \gamma_{4}-\gamma_{1} \gamma_{5}+\gamma_{0} \gamma_{7}=0, \tag{5.4}\\
& \gamma_{3} \gamma_{4}-\gamma_{1} \gamma_{6}+\gamma_{0} \gamma_{8}=0, \tag{5.5}\\
& \gamma_{3} \gamma_{5}-\gamma_{2} \gamma_{6}+\gamma_{0} \gamma_{9}=0, \tag{5.6}\\
& \gamma_{3} \gamma_{7}-\gamma_{2} \gamma_{8}+\gamma_{1} \gamma_{9}=0, \tag{5.7}\\
& \gamma_{6} \gamma_{7}-\gamma_{5} \gamma_{8}+\gamma_{4} \gamma_{9}=0 . \tag{5.8}
\end{align*}
$$

Moreover, $\gamma_{i} \neq 0, i=0 \ldots, 9$, since γ lies in a generic linear section. Meanwhile, from the orthogonality of $\left\{G_{j} \mid j=0, \ldots, 6\right\}$, we obtain that $\left|G_{j}\right|^{2} \sqrt{\binom{6}{j} z^{j}}=\left\langle\gamma, G_{j}\right\rangle=\sum_{k=0}^{9} \overline{G_{k j}} \gamma_{k}$, so that

$$
\begin{align*}
\overline{G_{64}} \gamma_{6}+\overline{G_{74}} \gamma_{7} & =\left|G_{4}\right|^{2} \sqrt{15} z^{4}, \tag{5.9}\\
\overline{G_{33}} \gamma_{3}+\overline{G_{53}} \gamma_{5}+\overline{G_{63}} \gamma_{6}+\overline{G_{73}} \gamma_{7} & =\left|G_{3}\right|^{2} \sqrt{2} z^{3} . \tag{5.10}
\end{align*}
$$

In the following, we will use the assumption that $G_{33} G_{53} G_{64} G_{74} \neq 0$. Observe that $\gamma_{8}=G_{85} z^{5}, \gamma_{9}=G_{96} z^{6}$. As a polynomial of z, we denote by $m\left(\gamma_{j}\right)$ the order of γ_{j} at $z=0$.

Combining (5.9) and $G_{64} G_{74} \neq 0$, and using $\operatorname{deg}\left(\gamma_{6}\right)=\operatorname{deg}\left(\gamma_{7}\right)=4$, it yields that $0 \leq$ $m\left(\gamma_{6}\right)=m\left(\gamma_{7}\right) \leq 4$. Meanwhile (5.8) gives that $z^{5} \mid \gamma_{6} \gamma_{7}$, which implies $5 \leq m\left(\gamma_{6}\right)+m\left(\gamma_{7}\right)$. It follows that $m\left(\gamma_{6}\right)=m\left(\gamma_{7}\right) \geq 3$. Moreover, we obtain $z^{5} \mid \gamma_{3} \gamma_{7}$ in accord with (5.7).

Claim 1. $\gamma_{6}=G_{64} z^{4}, \gamma_{7}=G_{74} z^{4}$.

Otherwise, we assume $m\left(\gamma_{7}\right)=3$. Then $2 \leq m\left(\gamma_{3}\right) \leq 3$ and $m\left(\gamma_{6}\right)=3$. Using (5.10), we have $m\left(\gamma_{5}\right) \geq 2$, which implies $z^{4} \mid\left(\gamma_{3} \gamma_{5}+\gamma_{0} \gamma_{9}\right)$. It follows from (5.6) that $z^{4} \mid \gamma_{2} \gamma_{6}$. As a result, $m\left(\gamma_{2}\right) \geq 1$, and $z^{6} \mid\left(\gamma_{2} \gamma_{8}-\gamma_{1} \gamma_{9}\right)$. Next, (5.7) yields that $z^{6} \mid \gamma_{3} \gamma_{7}$, and then $m\left(\gamma_{3}\right)=3$. Using (5.10) again, we obtain $m\left(\gamma_{5}\right) \geq 3$. Coupled with (5.6), $z^{6} \mid \gamma_{2} \gamma_{6}$ can be deduced. Consequently, $m\left(\gamma_{2}\right) \geq 3$, which contradicts $\operatorname{deg}\left(\gamma_{2}\right) \leq 2$. Hence the claim follows from the degrees of γ_{6} and γ_{7}.

Now that we have $z^{4} \mid\left(\gamma_{1} \gamma_{6}-\gamma_{0} \gamma_{8}\right)$, it follows from (5.5) that $z^{4} \mid \gamma_{3} \gamma_{4}$. Since $\operatorname{deg}\left(\gamma_{4}\right)=2$, we obtain $m\left(\gamma_{3}\right) \geq 2$.

Claim 2. $\gamma_{3}=G_{33} z^{3}$.
Otherwise, we assume $m\left(\gamma_{3}\right)=2$. Then $m\left(\gamma_{4}\right)=2$. Hence $z^{8} \mid\left(\gamma_{4} \gamma_{9}+\gamma_{6} \gamma_{7}\right)$, and $z^{8} \mid \gamma_{5} \gamma_{8}$, from which we can derive that $m\left(\gamma_{5}\right) \geq 3$. Using (5.10) again, there yields that $m\left(\gamma_{3}\right) \geq 3$ (by $G_{33} \neq 0$), which contradicts the assumption. Therefore $m\left(\gamma_{3}\right)=3$ and the Claim 2 follows from $\operatorname{deg}\left(\gamma_{3}\right)=3$.

Now, $\gamma_{5}=G_{53} z^{3}$ follows from (5.10) and $\operatorname{deg}\left(\gamma_{5}\right)=3$.
Using (5.8), we obtain $z^{8} \mid \gamma_{4} \gamma_{9}$. Hence $\gamma_{4}=G_{42} z^{2}$ by $\operatorname{deg}\left(\gamma_{4}\right)=2$.
From (5.6), we have $z^{6} \mid \gamma_{2} \gamma_{6}$. Therefore, $\gamma_{2}=G_{22} z^{2}$ due to that $\operatorname{deg}\left(\gamma_{2}\right)=2$.
Lastly, it follows from (5.7) that $z^{7} \mid \gamma_{1} \gamma_{9}$. So $\gamma_{1}=G_{11} z$, as $\operatorname{deg}\left(\gamma_{1}\right)=1$.
Corollary 5.1. A lower-triangular matrix $A \in G L(5, \mathbb{C})$ is diagonal if and only if the columns of (5.2) are perpendicular to each other.
Proof. The essence of the proof is to show that $G \triangleq A \cdot\left(E_{0}, E_{1}, \ldots, E_{6}\right)$ satisfies the assumptions in Lemma 5.1. Indeed, consider the curve $\gamma \triangleq G \cdot Z_{6}(z)$, which is projectively equivalent to the Veronese curve $P S L_{2} \cdot u^{6}$ so that it certainly lies in $G(2,5)$ as well. Note that $G_{33} G_{53} G_{64} G_{74} \neq 0$, because it can be presented as the product of the diagonal elements of the lower-triangular A. Therefore, Proposition 5.1 applies and G is in the form (5.3).

It follows from the first two columns of G that

$$
A e_{0} \wedge A e_{1} \equiv 0 \quad \bmod \left(e_{0} \wedge e_{1}\right), \quad A e_{0} \wedge A e_{2} \equiv 0 \quad \bmod \left(e_{0} \wedge e_{2}\right) .
$$

Hence, $A e_{0}, A e_{1} \in \operatorname{span}\left\{e_{0}, e_{1}\right\}$, and $A e_{0}, A e_{2} \in \operatorname{span}\left\{e_{0}, e_{2}\right\}$. As a result, $A e_{0} \equiv 0 \bmod e_{0}$. Due to that A is lower-triangular, we obtain $A e_{1} \equiv 0 \bmod e_{1}$ and $A e_{2} \equiv 0 \bmod e_{2}$. A similar observation on the 5 th column of G gives that $A e_{2} \wedge A e_{3} \equiv 0 \bmod \left(e_{2} \wedge e_{3}\right)$, which implies $A e_{3} \equiv 0 \bmod e_{3}$. In conclusion, we derive that A is diagonal.

Using Lemma 5.1 and Corollary 5.1, we can now prove the claim given at the beginning of this section.

Theorem 5.1. Let $\varphi: \mathbb{C} P^{1} \rightarrow G(2,5)$ be a generic constantly curved holomorphic 2 -sphere of degree 6. Then up to $U(5)$, it is in the diagonal family.

Proof. If φ is reducible, then it follows from subsection 2.3 that φ is precisely the standard Veronese curve (1.1), which clearly belongs to the diagonal family. Therefore we assume φ is irreducible in the following.

As shown in Proposition 4.1, φ can be transformed from a curve η in the standard Fano 3 -fold \mathcal{H}_{0}^{3} by a lower-triangular matrix $A \in G L(5, C)$, namely,

$$
\begin{equation*}
\varphi=A \cdot\left(E_{0}, E_{1}, E_{2}, E_{3}, E_{4}, E_{5}, E_{6}\right) L Z_{6}(z), \tag{5.11}
\end{equation*}
$$

where L is a 7×7 lower-triangular matrix. Moreover, from the proof of Corollary 4.2, we have $z=\infty$ is a ramified point (denoted by p in the sequel) of φ. It follows from Lemma 2.1 that, after performing a unitary Möbius reparametrization, there is an affine coordinate \tilde{z},
such that $\tilde{z}(p)=\infty$ and $\varphi=G Z_{6}(\tilde{z})$, where the columns of $G_{10 \times 7}$ are mutually orthogonal of unit length. Note that \tilde{z} differs from z by a Möbius transformation, which, without losing generality, can be assumed to be $\tilde{z}=z-\mu$. It is easily checked that $Z_{6}(z)=L_{1} Z_{6}(\tilde{z})$, where

$$
L_{1}=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\sqrt{6} & \mu & 0 & 0 & 0 & 0 & 0 \\
\sqrt{15} & \mu \sqrt{10} & \mu^{2} & 0 & 0 & 0 & 0 \\
2 \sqrt{5} & \mu \sqrt{30} & 2 \mu^{2} \sqrt{3} & \mu^{3} & 0 & 0 & 0 \\
\sqrt{15} & 2 \mu \sqrt{10} & 6 \mu^{2} & 2 \mu^{3} \sqrt{3} & \mu^{4} & 0 & 0 \\
\sqrt{6} & 5 \mu & 2 \mu^{2} \sqrt{10} & \mu^{3} \sqrt{30} \mu^{4} \sqrt{10} & \mu^{5} & 0 \\
1 & \mu \sqrt{6} & \mu^{2} \sqrt{15} & 2 \mu^{3} \sqrt{5} \mu^{4} \sqrt{15} & \mu^{5} \sqrt{6} \mu^{6}
\end{array}\right)
$$

It follows that

$$
G=A \cdot\left(E_{0}, E_{1}, E_{2}, E_{3}, E_{4}, E_{5}, E_{6}\right) L L_{1},
$$

which is in the form of (5.2). Moreover, it is easily seen that the entries of G satisfy $G_{33} G_{53} G_{64} G_{74} \neq 0$. Therefore, Lemma 5.1 can be applied to deduce that φ is ramified at $\tilde{z}=0$ and $\tilde{z}=\infty$, which correspond to $z=\mu$ and $z=\infty$. Combining this with Corollary 4.2, we obtain that the parameterization (5.11) of φ belongs to the Transversal Case. It follows from the proof of Corollary 4.2 that $z=0$ is also a ramified point in this case. So, we have $\mu=0$, namely, $L_{1}=I_{7}$. Then the conclusion follows from $L=\operatorname{diag}\left\{\omega_{0}, \omega_{1}, \ldots, \omega_{6}\right\}$ and Corollary 5.1.

6. Existence and uniqueness results for the diagonal family.

It follows from Theorem 5.1 that to classify generic constantly curved holomorphic 2spheres in $G(2,5)$, we need only consider those in the diagonal family, which are determined by diagonal matrices $A \in G L(5, \mathbb{C})$ and complex numbers $\left\{\omega_{0}, \omega_{1}, \ldots, \omega_{6}\right\}$ satisfying (4.9).

In this section, we will pin down the class of diagonal matrices $A \in G L(5, \mathbb{C})$ that warrants the existence of constantly curved holomorphic 2 -spheres of degree 6 , and meanwhile find the number of such 2 -spheres in each of these Fano 3 -folds $A\left(\mathcal{H}_{0}^{3}\right)$.

Assume φ is a constantly curved holomorphic 2 -sphere in the diagonal family given by the data $A=\operatorname{diag}\left\{a_{00}, a_{11}, \cdots, a_{44}\right\}$ and $\left\{\omega_{0}, \omega_{1}, \cdots, \omega_{6}\right\}$ satisfying (4.9). It follows from Definition 5.1 that

$$
\begin{align*}
& \varphi(z)=a_{00} a_{11} \omega_{0} e_{0} \wedge e_{1}+\sqrt{6} a_{00} a_{22} \omega_{1} z e_{0} \wedge e_{2}+3 a_{00} a_{33} \omega_{2} z^{2} e_{0} \wedge e_{3} \\
& +\sqrt{6} a_{11} a_{22} \omega_{2} z^{2} e_{1} \wedge e_{2}+2 a_{00} a_{44} \omega_{3} z^{3} e_{0} \wedge e_{4}+4 a_{11} a_{33} \omega_{3} z^{3} e_{1} \wedge e_{3} \tag{6.1}\\
& +3 a_{11} a_{44} \omega_{4} z^{4} e_{1} \wedge e_{4}+\sqrt{6} a_{22} a_{33} \omega_{4} z^{4} e_{2} \wedge e_{3}+\sqrt{6} a_{22} a_{44} \omega_{5} z^{5} e_{2} \wedge e_{4} \\
& +a_{33} a_{44} \omega_{6} z^{6} e_{3} \wedge e_{4},
\end{align*}
$$

and

$$
\begin{align*}
& \frac{\left(9 a_{00}^{2} a_{33}^{2}+6 a_{11}^{2} a_{22}^{2}\right)\left|\omega_{2}\right|^{2}}{15}=\frac{\left(a_{00}^{2} a_{44}^{2}+4 a_{11}^{2} a_{33}^{2}\right)\left|\omega_{3}\right|^{2}}{5}=a_{00}^{2} a_{11}^{2}\left|\omega_{0}\right|^{2}= \tag{6.2}\\
& \frac{\left(9 a_{11}^{2} a_{44}^{2}+6 a_{22}^{2} a_{33}^{2}\right)\left|\omega_{4}\right|^{2}}{15}=a_{00}^{2} a_{22}^{2}\left|\omega_{1}\right|^{2}=a_{22}^{2} a_{44}^{2}\left|\omega_{5}\right|^{2}=a_{33}^{2} a_{44}^{2}\left|\omega_{6}\right|^{2}=1 .
\end{align*}
$$

Remark 6.1. We point out that φ has the following standard parameterization in the sense of section 2.2.

$$
\binom{\varphi_{1}(z)}{\varphi_{2}(z)}=\left(\begin{array}{ccccc}
1 & 0 & -\sqrt{6} \frac{\omega_{2} a_{22}}{\omega_{0}} z^{2} & -4 \frac{\omega_{3} a_{33}}{\omega_{0} a_{00}} z^{3} & -3 \frac{\omega_{4} a_{44}}{\omega_{0} a_{00}} z^{4} \tag{6.3}\\
0 & 1 & \sqrt{6} \frac{\omega_{1} a_{22}}{\omega_{0} a_{11}} z & 3 \frac{20}{\omega_{0} a_{33}} z^{2} & 2 \frac{\omega_{3} a_{04} 0}{\omega_{0} a_{11}} z^{3}
\end{array}\right) .
$$

In Jiao and Peng's approach, they considered collectively the undertermined variables

$$
\begin{aligned}
& \alpha_{2} \triangleq-\sqrt{6}\left(\omega_{2} a_{22}\right) /\left(\omega_{0} a_{00}\right), \beta_{3} \triangleq-4\left(\omega_{3} a_{33}\right) /\left(\omega_{0} a_{00}\right), \varphi_{4} \triangleq-3\left(\omega_{4} a_{44}\right) /\left(\omega_{0} a_{00}\right) \\
& u_{1} \triangleq \sqrt{6}\left(\omega_{1} a_{22}\right) /\left(\omega_{0} a_{11}\right), v_{2} \triangleq 3\left(\omega_{2} a_{33}\right) /\left(\omega_{0} a_{11}\right), z_{3} \triangleq 2\left(\omega_{3} a_{44}\right) /\left(\omega_{0} a_{11}\right)
\end{aligned}
$$

Then the constant curvature condition (6.2) is equivalent to

$$
\begin{align*}
& \left|u_{1}\right|^{2}=6,\left|v_{2}\right|^{2}+\left|\alpha_{2}\right|^{2}=15,\left|z_{3}\right|^{2}+\left|\beta_{3}\right|^{2}=20 \\
& \left|\varphi_{4}\right|^{2}+\left|\alpha_{2} v_{2}-\beta_{3} u_{1}\right|^{2}=15,\left|\alpha_{2} z_{3}-\varphi_{4} u_{1}\right|^{2}=6,\left|\beta_{3} z_{3}-\varphi_{4} v_{2}\right|^{2}=1 \tag{6.4}
\end{align*}
$$

The standard Veronese curve in (1.1) corresponds to the solution

$$
\left(\alpha_{2}, \beta_{3}, \varphi_{4}, u_{1}, v_{2}, z_{3}\right)=(-\sqrt{6},-4,-3, \sqrt{6}, 3,2) .
$$

Branching out, observe that after fixing $\left(\alpha_{2}, \varphi_{4}, u_{1}, v_{2}\right)=(-\sqrt{6},-3, \sqrt{6}, 3)$, we have that the system of equations (6.4) reduces to

$$
\left|z_{3}\right|^{2}+\left|\beta_{3}\right|^{2}=20,\left|\beta_{3}+3\right|^{2}=1,\left|z_{3}-3\right|^{2}=1, \quad\left|\beta_{3} z_{3}+9\right|^{2}=1
$$

Set

$$
\begin{equation*}
\beta_{3} \triangleq-3+e^{\sqrt{-1} \theta}, z_{3} \triangleq 3+e^{\sqrt{-1} \varphi} \tag{6.5}
\end{equation*}
$$

From the first equation we derive $\cos \theta=\cos \varphi$; and so $\varphi= \pm \theta$. If $\varphi=-\theta$, then the last equation above gives $\theta=0$ or π. Therefore without losing generality, we may set $\varphi=\theta$ in any event. Consequently, we obtain a 1-parameter family of solutions

$$
\left(\begin{array}{cccc}
1 & 0 & -\sqrt{6} z^{2} & \left(-3+e^{\sqrt{-1} \theta}\right) z^{3} \tag{6.6}\\
0 & 1 & \sqrt{6} z & 3 z^{2}
\end{array}\left(3+e^{\sqrt{-1} \theta}\right) z^{3}\right),
$$

hitherto unknown in the literature, to the authors' knowledge.
Though the simple perturbation (6.5) generates the explicit 1-parameter family (6.6), in general, however, without further geometric clue it is a difficult task to completely classify the system (6.4). As our analysis has revealed up to now, the nature of the classification lies in that one must perturb in certain Fano 3 -folds dictated by (6.1) to achieve the classification. In the following, we will present an algebro-geometric approach to describe all solutions to the diagonal system 6.1.

Set

$$
\omega_{i} \triangleq \sqrt{t_{i}} e^{\sqrt{-1} \theta_{i}}, \quad i=0, \ldots, 6
$$

It follows from the condition of constant curvature (6.2) that

$$
\begin{align*}
& t_{0}=1 / a_{11}^{2}, t_{1}=1 / a_{22}^{2}, t_{2}=15 /\left(9 a_{00}^{2} a_{33}^{2}+6 a_{11}^{2} a_{22}^{2}\right), t_{6}=1 /\left(a_{33}^{2} a_{44}^{2}\right) \\
& t_{3}=5 /\left(a_{00}^{2} a_{44}^{2}+4 a_{11}^{2} a_{33}^{2}\right), t_{4}=15 /\left(9 a_{11}^{2} a_{44}^{2}+6 a_{22}^{2} a_{33}^{2}\right), t_{5}=1 /\left(a_{22}^{2} a_{44}^{2}\right) \tag{6.7}
\end{align*}
$$

Remark 6.2. For the detailed analysis to follow on the length constraints (6.2), without loss of generality through scaling, we may assume that $a_{00}=1$ and $a_{j j} \in \mathbb{R}^{+}, 1 \leq j \leq 4$ (by a diagonal unitary transformation in $U(5)$). Moreover, it follows from Lemma 3.9 that the transformation $\rho^{4}(\operatorname{diag}\{\lambda, 1\})=\operatorname{diag}\left\{1, \lambda, \lambda^{2}, \lambda^{3}, \lambda^{4}\right\}$ preserves \mathcal{H}_{0}^{3} for any $\lambda \in \mathbb{C}^{*}$. As a consequence, after multiplying by an appropriate real λ, we may furthermore assume $a_{22}=a_{33}$. This process is equivalent to applying a Möbius reparametrization to the 2 -sphere φ by $z \mapsto \lambda z$.

Similarly, we assume further that $\theta_{0}=\theta_{6}=0$, which follows from dehomogenizing to eliminate θ_{0} and introducing a rotational reparametrization of the 2 -sphere φ to eliminate θ_{6}.

Combining (6.7) with the above normalization, we have

$$
\begin{equation*}
t_{2}=\frac{5 t_{0} t_{1}}{\left(3 t_{0}+2\right)}, t_{3}=\frac{5 t_{0} t_{1} t_{6}}{\left(t_{0} t_{1}^{2}+4 t_{6}\right)}, t_{4}=\frac{5 t_{0} t_{1}^{2} t_{6}}{\left(3 t_{1}^{3}+2 t_{0} t_{6}\right)}, t_{5}=t_{6} \tag{6.8}
\end{equation*}
$$

Moreover, it follows from 4.9) that the angles θ_{i} of ω_{i} satisfy

$$
\begin{align*}
& \sqrt{t_{0} t_{4}}=4 \sqrt{t_{1} t_{3}} e^{\sqrt{-1}\left(\theta_{1}+\theta_{3}-\theta_{4}\right)}-3 t_{2} e^{\sqrt{-1}\left(2 \theta_{2}-\theta_{4}\right)} \\
& \sqrt{t_{0} t_{5}}=3 \sqrt{t_{1} t_{4}} e^{\sqrt{-1}\left(\theta_{1}+\theta_{4}-\theta_{5}\right)}-2 \sqrt{t_{2} t_{3}} e^{\sqrt{-1}\left(\theta_{2}+\theta_{3}-\theta_{5}\right)} \tag{6.9}\\
& \sqrt{t_{0} t_{6}}=9 \sqrt{t_{2} t_{4}} e^{\sqrt{-1}\left(\theta_{2}+\theta_{4}\right)}-8 t_{3} e^{\sqrt{-1} 2 \theta_{3}}
\end{align*}
$$

Remark 6.3. Conversely, given a solution $\left\{t_{0}, t_{1} \cdots, t_{6}\right\} \subset \mathbb{R}^{+}$and $\left\{\theta_{1} \cdots, \theta_{5}\right\} \subset \mathbb{R}$ to (6.8) and 6.9), by solving $a_{i i}$ from t_{i} and defining $\omega_{i}=t_{i} e^{\sqrt{-1} \theta_{i}}$, we can obtain a constantly curved holomorphic 2 -sphere of degree 6 in $G(2,5)$ parameterized as in 6.1.

We point out that the three equations in (6.9) are not independent by the following Lemma 6.1. In fact, set

$$
\begin{align*}
& x_{1} \triangleq e^{\sqrt{-1}\left(\theta_{1}+\theta_{3}-\theta_{4}\right)}, y_{1} \triangleq e^{\sqrt{-1}\left(2 \theta_{2}-\theta_{4}\right)}, x_{2} \triangleq e^{\sqrt{-1}\left(\theta_{1}+\theta_{4}-\theta_{5}\right)}, \\
& y_{2} \triangleq e^{\sqrt{-1}\left(\theta_{2}+\theta_{3}-\theta_{5}\right)}, x_{3} \triangleq e^{\sqrt{-1}\left(\theta_{2}+\theta_{4}\right)}, \quad y_{3} \triangleq e^{\sqrt{-1}\left(2 \theta_{3}\right)} \tag{6.10}
\end{align*}
$$

Taking norm squared to both sides of (6.9), we see from the realness of t_{0}, \cdots, t_{6} that

$$
\begin{align*}
& h_{1} \triangleq v-u w=0, \quad h_{2} \triangleq u^{2}-X u+1=0, \quad h_{3} \triangleq v^{2}-Y v+1=0 \\
& h_{4} \triangleq w^{2}-Z w+1=0 \tag{6.11}
\end{align*}
$$

where,

$$
\begin{align*}
& u=x_{1} / y_{1}, \quad v=x_{2} / y_{2}, \quad w=x_{3} / y_{3} \\
& X=\left(9 t_{2}^{2}+16 t_{1} t_{3}-t_{0} t_{4}\right) /\left(12 t_{2} \sqrt{t_{1} t_{3}}\right) \\
& Y=\left(4 t_{2} t_{3}+9 t_{1} t_{4}-t_{0} t_{5}\right) /\left(6 \sqrt{t_{2} t_{3}} \sqrt{t_{1} t_{4}}\right) \tag{6.12}\\
& Z=\left(64 t_{3}^{2}+81 t_{2} t_{4}-t_{0} t_{6}\right) /\left(72 t_{3} \sqrt{t_{2} t_{4}}\right)
\end{align*}
$$

We first solve 6.11 by viewing $\{X, Y, Z\}$ as indeterminates. Define

$$
\begin{equation*}
H \triangleq-X Y Z+X^{2}+Y^{2}+Z^{2}-4 \tag{6.13}
\end{equation*}
$$

Lemma 6.1. If $\{v, u, w, X, Y, Z\}$ solves the system 6.11), then $H=0$. Conversely, given any complex solution $\left(X_{0}, Y_{0}, Z_{0}\right)$ to $H=0$, there always exits $\left(v_{0}, u_{0}, w_{0}\right) \in \mathbb{C}^{3}$, such that $\left(v_{0}, u_{0}, w_{0}, X_{0}, Y_{0}, Z_{0}\right)$ solves this system.

Moreover, when the solution X_{0}, Y, Z_{0} to $H=0$ are real, $\left|v_{0}\right|=\left|u_{0}\right|=\left|w_{0}\right|=1$ if and only if $X_{0}, Y_{0}, Z_{0} \in[-2,2]$, in which case there are at most two solutions, namely, $\left(v_{0}, u_{0}, w_{0}\right)$ and its complex conjugate $\left(\overline{v_{0}}, \overline{u_{0}}, \overline{w_{0}}\right)$, which are distinct unless $X_{0}^{2}=Y_{0}^{2}=Z_{0}^{2}=4$ and $X_{0} Y_{0} Z_{0}=8$.
Proof. Assume $\{v, u, w\}$ solves the last three equations in (6.11), respectively. It follows that $\{1 / v, 1 / u, 1 / w\}$ also solves them, respectively, with $X=u+1 / u, Y=v+1 / v, Z=w+1 / w$. By a straightforward calculation, we have

$$
H=(u v w-1)(u-v w)(v-u w)(w-u v) /\left(u^{2} v^{2} w^{2}\right)
$$

from which the first statement follows by the first equation of 6.11).
To prove the second statement, the realness of X_{0}, Y_{0}, Z_{0} dictates that $\left|v_{0}\right|=\left|u_{0}\right|=\left|w_{0}\right|=$ 1 if and only if the last three equations in (6.11) all have a pair of conjugate solutions, which implies that their discriminants $X_{0}^{2}-4, Y_{0}^{2}-4, Z_{0}^{2}-4$ are no more than 0 .

Furthermore, given $\left(X_{0}, Y_{0}, Z_{0}\right) \in[-2,2]^{3}$ that solves (6.13), assume $\left\{\left(v_{i}, u_{i}, w_{i}\right) \mid i=0,1\right\}$ are two pairs of solutions of the system $\sqrt{6.11)}$. It follows that

$$
v_{1}=v_{0} \text { or } \overline{v_{0}}, \quad u_{1}=u_{0} \text { or } \overline{u_{0}}, \quad w_{1}=w_{0} \text { or } \overline{w_{0}} .
$$

By the pigeonhole principle, we may assume $u_{1}=\overline{u_{0}}, w_{1}=\overline{w_{0}}$ without loss of generality. Then it follows from the first equation h_{1} in (6.11) that $v_{1}=u_{1} w_{1}=\overline{v_{0}}$. Therefore, we deduce that these two solutions either coincide or differ by a complex conjugation, where the former case occurs when u_{0}, v_{0}, w_{0} are all real to satisfy $X_{0}=Y_{0}=Z_{0}= \pm 2$ with $X_{0} Y_{0} Z_{0}=8$ to respect $H=0$.

We now analyse the diagonal family in terms of $\left(t_{0}, t_{1}, t_{6}\right) \in\left(\mathbb{R}^{+}\right)^{3}$. By substituting (6.8) and (6.12) into the formula of H in (6.13) and ignoring the nonzero denominator of the fraction and the nonzero factors, we obtain a hypersurface in $\left(\mathbb{R}^{+}\right)^{3}$ defined by $F\left(t_{0}, t_{1}, t_{6}\right)=$ 0 , where

$$
\begin{align*}
& F\left(t_{0}, t_{1}, t_{6}\right) \triangleq 168750000 H t_{0}^{6} t_{1}^{11} t_{6}^{4} /\left(t_{2} t_{3} t_{4}^{2}\right) \\
& =9 t_{1}{ }^{6} t_{6}{ }^{3} t_{0}{ }^{9}+\left(6912 t_{1}{ }^{9} t_{6}{ }^{2}-366 t_{1}{ }^{6} t_{6}{ }^{3}-10260 t_{1}{ }^{4} t_{6}{ }^{4}\right) t_{0}{ }^{8} \\
& +\left(435888 t_{1}{ }^{2} t_{6}{ }^{5}+299592 t_{1}{ }^{4} t_{6}{ }^{4}+\left(-397332 t_{1}{ }^{7}+2560 t_{1}{ }^{6}\right) t_{6}{ }^{3}-58329 t_{1}{ }^{9} t_{6}{ }^{2}+63504 t_{1}{ }^{12} t_{6}\right) t_{0}{ }^{7} \\
& +\left(65088 t_{6}{ }^{6}+225504 t_{1}{ }^{2} t_{6}{ }^{5}+\left(31968 t_{1}{ }^{5}+533856 t_{1}{ }^{4}\right) t_{6}{ }^{4}+\left(-451260 t_{1}{ }^{7}-128 t_{1}{ }^{6}\right) t_{6}{ }^{3}+\right. \\
& \left.\left(-1296 t_{1}{ }^{10}-44868 t_{1}{ }^{9}\right) t_{6}{ }^{2}+16416 t_{1}{ }^{12} t_{6}\right) t_{0}{ }^{6} \\
& +\left(78720 t_{6}{ }^{6}+\left(-1366848 t_{1}{ }^{3}+154368 t_{1}{ }^{2}\right) t_{6}{ }^{5}+\left(-2480688 t_{1}{ }^{5}+203712 t_{1}{ }^{4}\right) t_{6}{ }^{4}+\left(2125440 t_{1}{ }^{8}+\right.\right. \\
& \left.\left.541536 t_{1}{ }^{7}\right) t_{6}{ }^{3}+\left(-501336 t_{1}{ }^{10}+2560 t_{1}{ }^{9}\right) t_{6}{ }^{2}+\left(-190512 t_{1}{ }^{13}-58329 t_{1}{ }^{12}\right) t_{6}+63504 t_{1}{ }^{15}\right) t_{0}{ }^{5} \tag{6.14}\\
& +\left(22016 t_{6}{ }^{6}+\left(15552 t_{1}{ }^{3}+99840 t_{1}{ }^{2}\right) t_{6}{ }^{5}+\left(145152 t_{1}{ }^{6}-2192448 t_{1}{ }^{5}\right) t_{6}{ }^{4}+\left(1076544 t_{1}{ }^{8}+\right.\right. \\
& \left.\left.533856 t_{1}{ }^{7}\right) t_{6}{ }^{3}+\left(31104 t_{1}{ }^{11}-451260 t_{1}{ }^{10}\right) t_{6}{ }^{2}+\left(-1296 t_{1}{ }^{13}-366 t_{1}{ }^{12}\right) t_{6}+6912 t_{1}{ }^{15}\right) t_{0}{ }^{4} \\
& +\left(-1024 t_{6}{ }^{6}-645120 t_{1}{ }^{3} t_{6}{ }^{5}+\left(5774976 t_{1}{ }^{6}+154368 t_{1}{ }^{5}\right) t_{6}{ }^{4}+\left(-3048192 t_{1}{ }^{9}-2480688 t_{1}{ }^{8}\right) t_{6}{ }^{3}+\right. \\
& \left.\left(2125440 t_{1}{ }^{11}+299592 t_{1}{ }^{10}\right) t_{6}{ }^{2}-397332 t_{1}{ }^{13} t_{6}+9 t_{1}{ }^{15}\right) t_{0}{ }^{3} \\
& +\left(22016 t_{1}{ }^{3} t_{6}{ }^{5}+15552 t_{1}{ }^{6} t_{6}{ }^{4}+\left(145152 t_{1}{ }^{9}+225504 t_{1}{ }^{8}\right) t_{6}{ }^{3}+31968 t_{1}{ }^{11} t_{6}{ }^{2}-10260 t_{1}{ }^{13} t_{6}\right) t_{0}{ }^{2} \\
& +\left(435888 t_{1}{ }^{11} t_{6}{ }^{2}-1366848 t_{1}{ }^{9} t_{6}{ }^{3}+78720 t_{1}{ }^{6} t_{6}{ }^{4}\right) t_{0}+65088 t_{1}{ }^{9} t_{6}{ }^{3}=0,
\end{align*}
$$

with the three necessary discriminant constraints

$$
\begin{align*}
& \left(9 t_{2}^{2}+16 t_{1} t_{3}-t_{0} t_{4}\right)^{2}-576 t_{1} t_{2}^{2} t_{3} \leq 0,\left(4 t_{2} t_{3}+9 t_{1} t_{4}-t_{0} t_{5}\right)^{2}- \\
& 144 t_{1} t_{2} t_{3} t_{4} \leq 0,\left(64 t_{3}^{2}+81 t_{2} t_{4}-t_{0} t_{6}\right)^{2}-20736 t_{2} t_{3}^{2} t_{4} \leq 0, \tag{6.15}
\end{align*}
$$

due to the assumptions made on $X, Y, Z \in[-2,2]$ in Lemma 6.1:
Remark 6.4. The three constraints $|u|=|v|=|w|=1$ are not independent by the first equation in 6.11). Any two of the three inequalities in (6.15) imply the third. Moreover, $Z \in(-2,2)$ implies $X, Y \in(-2,2)$ since for a fixed $Z \in(-2,2), H=0$ in (6.13) defines an ellipse good for the conclusion.

In conclusion, we obtain the following existence and uniqueness theorem.
Theorem 6.1. Given a diagonal matrix $A=\operatorname{diag}\left\{1, a_{11}, a_{22}, a_{22}, a_{44}\right\}$, normalized as in Remark 6.2 , there exist constantly curved holomorphic 2 -spheres of degree 6 in $A\left(\mathcal{H}_{0}^{3}\right)$ if and only if $\left\{t_{0}, t_{1}, t_{6}\right\}$ given by (6.8) satisfy the algebraic equation (6.14) and inequalities (6.15).

Moreover, in $A\left(\mathcal{H}_{0}^{3}\right)$, there exist at most two constantly curved holomorphic 2 -spheres of degree 6; they are distinct except when $\{X, Y, Z\}$ defined in (6.12) satisfies $X^{2}=Y^{2}=Z^{2}=$ 4 and $X Y Z=8$.

Proof. The necessary part has been verified in the preceding discussion.
Conversely, assume that $\left\{t_{0}, t_{1}, t_{6}\right\}$ satisfy the algebraic equation (6.14) and inequalities (6.15). Then we obtain at least a triple $\left(v_{0}, u_{0}, w_{0}\right)$ of solution of system (6.11) according to Lemma 6.1. By substituting it into system 6.9), we obtain a unique solution $\left\{\left(x_{i}, y_{i}\right) \mid 1 \leq i \leq 3\right\}$ by the following recipe: The first equation of (6.9) gives that

$$
\begin{equation*}
y_{1}=\sqrt{t_{0} t_{4}} /\left(4 \sqrt{t_{1} t_{3}} u_{0}-3 t_{2}\right), \quad x_{1}=y_{1} u_{0} . \tag{6.16}
\end{equation*}
$$

It follows from $\left|u_{0}\right|=1$ that both x_{1} and y_{1} are of unit length. A similar discussion applies to $\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$.

Apply the logarithmic function on both sides of (6.10). Since the ranks of the coefficient matrix of of $\left(\theta_{1}, \ldots, \theta_{5}\right)$ and its enlarged version with the augmented $\left(\log \left(x_{1}\right), \cdots, \log \left(y_{3}\right)\right)$ are both equal to 5 , we can solve θ_{j} from the arguments of the points $\left\{\left(x_{i}, y_{i}\right) \mid 1 \leq i \leq 3\right\}$ on the plane. Substituting all the data into (6.1) gives a constantly curved holomorphic 2-sphere φ in $A\left(\mathcal{H}_{0}^{3}\right)$ (see Remark 6.3).

Lastly, we remark that φ is uniquely determined by $\left(v_{0}, u_{0}, w_{0}\right)$, owing to that the only difference between any two pairs of solutions $\left\{\theta_{j} \mid 1 \leq j \leq 5\right\}$ and $\left\{\tilde{\theta}_{j} \mid 1 \leq j \leq 5\right\}$ of (6.10) is $\theta_{j}=\tilde{\theta}_{j}+2 k j \pi / 6,1 \leq j \leq 5$, for some $0 \leq k \leq 5$. It is straightforward to show that the corresponding two curves share the same image by introducing a rotational reparametrization $\tilde{z}=z e^{\sqrt{-12 k \pi / 6}}$.

In conclusion, any solution (v, u, w) of system ($\sqrt{6.11})$ determines uniquely a constantly curved 2 -sphere. Then the second statement follows from Lemma 6.1.

Corollary 6.1. The only constantly curved holomorphic 2 -sphere of degree 6 in the standard Fano 3-fold $\mathcal{H}_{0}^{3}=V_{6} \cap G(2,5)$ is the standard Veronese curve $P S L_{2} \cdot u^{6}$.

Proof. For the standard Fano 3 -fold \mathcal{H}_{0}^{3}, the associated $\left\{t_{0}, t_{1}, t_{6}\right\}$ are all equal to 1 . Therefore the corresponding $X=Y=Z=2$ by (6.12).

Remark 6.5. In addition to the standard Fano 3 -fold \mathcal{H}_{0}^{3}, let us take the diagonal $A=$ diag $\{1,1,4,4,16\}$, there exists a unique constantly curved holomorphic 2 -sphere of degree 6 that lies in $A\left(\mathcal{H}_{0}^{3}\right)$ given by

$$
\left(\begin{array}{ccccc}
1 & 0 & -\sqrt{6} z^{2} & -2 z^{3} & -3 z^{4} \\
0 & 1 & \sqrt{6} z & 3 z^{2} & 4 z^{3}
\end{array}\right),
$$

since the associated $X=Y=Z=2$. It turns out that among Fano 3-folds \mathcal{H}^{3} in $G(2,5)$, only three (up to unitary congruence) contain a unique constantly curved holomorphic 2sphere of degree 6; the last one will be given in Example 4.

7. The moduli space and new examples

Before describing the moduli space of the diagonal family, we first consider the semialgebraic set $S \subseteq\left(\mathbb{R}^{+}\right)^{3}$ determined by the algebraic equation (6.14) and the three inequalities (6.15).

Proposition 7.1. The semialgebraic set S is 2 -dimensional and equipped with an involution

$$
\begin{equation*}
\sigma: S \rightarrow S, \quad t=\left(t_{0}, t_{1}, t_{6}\right) \mapsto T=\left(T_{0}, T_{1}, T_{6}\right)=\left(g t_{0}, g t_{1}, g^{3} t_{6}\right), \tag{7.1}
\end{equation*}
$$

where $g\left(t_{0}, t_{1}, t_{6}\right) \triangleq t_{1}^{3} /\left(t_{0}^{2} t_{6}\right)$.

Proof. It is easy to show that σ is an involution of $\left(\mathbb{R}^{+}\right)^{3}$ restricted to S; consequently, we need only verify that $\sigma(S) \subseteq S$.

Assume that $t=\left(t_{0}, t_{1}, t_{6}\right) \in S$, i.e., that t satisfies

$$
F(t)=0, \text { and } X(t), Y(t), Z(t) \in[-2,2] .
$$

A direct computation yields that

$$
F(T)=g^{21} F(t)=0, Z(T)=Z(t) \in[-2,2] .
$$

Note that the last equation of (4.9) gives

$$
\sqrt{t_{1} t_{6}}=3 \sqrt{t_{2} t_{5}} e^{\sqrt{-1}\left(\theta_{2}+\theta_{5}-\theta_{1}\right)}-2 \sqrt{t_{3} t_{4}} e^{\sqrt{-1}\left(\theta_{3}+\theta_{4}-\theta_{1}\right)}
$$

Set $q=e^{\sqrt{-1}\left(\theta_{2}+\theta_{5}-\theta_{3}-\theta_{4}\right)}$. Then a similar argument to that deriving (6.11) leads to $q^{2}-Q q+1=0, \quad$ where

$$
Q(t) \triangleq\left(-t_{1} t_{6}+9 t_{2} t_{5}+4 t_{3} t_{4}\right) /\left(6 \sqrt{t_{2} t_{3} t_{4} t_{5}}\right)
$$

Since $|q|=1$, it forces $Q(t) \in[-2,2]$. It is straightforward to show that $Y(T)=Q(t) \in$ [$-2,2$]. Therefore, combining Remark 6.4, we obtain that the norm of $X(T)$ is also less than or equal to 2 . This completes the proof that $T=\sigma(t)$ lies in S.

We are left with showing that the real dimension of the semialgebraic set S is 2 . At the generic point $p_{0}=\left(1, \frac{1}{2}, \frac{1}{8}\right) \in S$ (for the choice of p_{0}, see Example 1 below for details). A calculation gives

$$
\nabla F\left(p_{0}\right)=\left(\partial F / \partial t_{0}, \partial F / \partial t_{1}, \partial F / \partial t_{6}\right)\left(p_{0}\right)=(0,-13125 / 256,4375 / 64) \neq 0
$$

Owing to the implicit function theorem, near p_{0}, S is locally a graph of t_{0} and t_{1}; hence, its real dimension is 2 .

Remark 7.1. We point out that the involution σ comes from the reciprocal transformation of $\mathbb{C} P^{1}$ (see the proof of the following Theorem).

Now, we are in a position to present our main theorem. Denote by \mathcal{M} the moduli space of generic constantly curved holomorphic 2 -spheres of degree 6 in $G(2,5)$, modulo, extrinsically, the ambient unitary $U(5)$-equivalence, and intrinsically, the internal Möbius reparametrization.

Theorem 7.1. $\mathcal{M}=S / \mathbb{Z}_{2}$, so that it is a 2-dimensional semialgebraic set.
Proof. Our first goal is to show that a holomorphic 2 -sphere of the diagonal family is also determined by its coefficients of $z^{k}, k=2,3,4$ in (6.1). Consider the quotients of them respectively to define a map

$$
\begin{equation*}
\tau: S \rightarrow\left(\mathbb{R}^{+}\right)^{3}, \quad\left(t_{0}, t_{1}, t_{6}\right) \mapsto(A, B, C) \triangleq\left(\frac{a_{00} a_{33}}{a_{11} a_{22}}, \frac{a_{00} a_{44}}{a_{11} a_{33}}, \frac{a_{11} a_{44}}{a_{22} a_{33}}\right) . \tag{7.2}
\end{equation*}
$$

It follows from (6.7) that $(A, B, C)=\left(\sqrt{t_{0}}, \sqrt{\frac{t_{0}}{t_{6}}} t_{1}, \sqrt{\frac{t_{1}}{t_{0} t_{6}}} t_{1}\right)$. It is straightforward to show that $t_{0}=A^{2}, t_{1}=A^{4} C^{2} / B^{2}, t_{6}=A^{10} C^{4} / B^{6}$; therefore τ is injective.

The next step is to describe our moduli space. Let $\varphi_{1}(z)$ and $\varphi_{2}(\tilde{z})$ be two holomorphic 2spheres of the diagonal family corresponding to $t=\left(t_{0}, t_{1}, t_{6}\right)$ and $\tilde{t}=\left(\tilde{t_{0}}, \tilde{t_{1}}, \tilde{t_{6}}\right)$, respectively. If there exists a $U \in U(5)$ such that the image of $U \cdot \varphi_{1}$ agrees with that of φ_{2}, then U induces a Möbius transformation $\tilde{z}=f(z)$ on $\mathbb{C} P^{1}$. Since the ramified points of φ_{1} and φ_{2} are both $\{0, \infty\}$ by Lemma 5.1, this set is invariant under φ. Hence $\tilde{z}=\mu z$ or $\frac{\mu}{z}$, where
$\mu \in \mathbb{C}^{*}$. Our aim is to establish that $\tilde{t}=t$ or $\tilde{t}=\sigma(t)$, which suffices to complete the proof. We divide the argument into two cases.

Case (1): Suppose that $\tilde{z}=\mu z$. Comparing the first two and last two terms of φ_{1} and φ_{2}, we obtain that (see (6.1))

$$
\begin{aligned}
& U \cdot e_{0} \wedge U \cdot e_{1} \equiv 0 \quad \bmod \left(e_{0}, e_{1}\right), U \cdot e_{0} \wedge U \cdot e_{2} \equiv 0 \\
& U \cdot e_{2} \wedge U \cdot e_{4} \equiv 0 \quad \bmod \left(e_{0}, e_{2}\right), \\
& \bmod \left(e_{2}, e_{4}\right), U \cdot e_{3} \wedge U \cdot e_{4} \equiv 0
\end{aligned} \quad \bmod \left(e_{3}, e_{4}\right) .
$$

Hence, $U=\operatorname{diag}\left\{u_{00}, \ldots, u_{44}\right\}$ is diagonal as U is unitary. As a result, they share the same quotients in (7.2), i.e., $\tau(t)=\tau(\tilde{t})$, so that $t=\tilde{t}$ by the injectivity of τ.

Case (2): Suppose that $\tilde{z}=\frac{\mu}{z}$. Following a similar argument as in Case (1), we see that U is anti-diagonal. Consequently, the quotients in (7.2) satisfy $A(\tilde{t})=C(t), B(\tilde{t})=$ $B(t), C(\tilde{t})=A(t)$. By the exposition below (7.2), it is easy to show that $\tilde{t}=\sigma(t)$.

Now, the conclusion follows from Theorem 5.1.
The end of this section is devoted to the construction of several interesting individual as well as 1-parameter families of examples.

Recall the involution $\sigma: S \rightarrow S$ and its invariant subset S_{1} defined by setting $g=1$, so that $1=g=t_{1}^{3} /\left(t_{0}^{2} t_{6}\right)$. It is a piecewise smooth simple closed curve. Indeed, substitute $t_{6}=t_{1}^{3} / t_{0}^{2}$ into (6.14) and ignore the non-zero denominator and the non-zero factors. The level set S_{1} is the semialgebraic set defined by the three inequalities in (6.15) and

$$
\begin{aligned}
& \left(441 t_{0}^{8}-42 t_{0}^{7}+t_{0}^{6}-72 t_{0}^{5} t_{1}-5136 t_{0}^{4} t_{1}-1592 t_{0}^{3} t_{1}+7056 t_{0}^{2} t_{1}^{2}-672 t_{0} t_{1}^{2}+16 t_{1}^{2}\right) . \\
& \left(t_{0}-1\right)\left(2 t_{0}^{3}-3 t_{1} t_{0}+t_{1}\right)=0 .
\end{aligned}
$$

In the $t_{0} t_{1}$-coordinate plane, S_{1} is plotted in Figure 1. The branch corresponding to $\left(t_{0}-1\right)=$ 0 is the blue vertical line segment. The second branch described by $\left(2 t_{0}^{3}-3 t_{1} t_{0}+t_{1}\right)=0$ is the end point $(1,1)$ of the blue line segment. The third branch corresponds to the union of the (upper) brown and (lower) green curves parametrized by

$$
\begin{equation*}
\psi_{1}=\left\{\left(s, F_{1}(s)\right) \mid s \in[1,11 / 6]\right\}, \psi_{2}=\left\{\left(s, F_{2}(s)\right) \mid s \in[1,11 / 6]\right\}, \tag{7.3}
\end{equation*}
$$

respectively, where $F_{1}=\left(t_{0}^{3}\left(199+642 t_{0}+9 t_{0}^{2}+30 \Delta\right)\right) /\left(4\left(21 t_{0}-1\right)^{2}\right), F_{2}=\left(t_{0}^{3}\left(199+642 t_{0}+9 t_{0}^{2}-\right.\right.$ $30 \Delta) /\left(4\left(21 t_{0}-1\right)^{2}\right)$, and $\Delta \triangleq\left(3 t_{0}+2\right) \sqrt{\left(4 t_{0}+1\right)\left(11-6 t_{0}\right)}$.

It follows from Theorem 7.1 that the moduli space is $\mathcal{M}=S / \sigma$ with the simple closed curve S_{1} on its boundary. By applying the coordinate transformation $\left(t_{0}, t_{1}, t_{6}\right) \mapsto\left(t_{0}, t_{1}, \lambda\right)$ with $\lambda=1 / g$, we can plot \mathcal{M} as in Figure 2. It looks like a horn, with S_{1} marked in red, and the level sets of $g=2$ and $g=3$ marked in green and blue, respectively. The figure seems to suggest that the moduli space \mathcal{M} is a topological disk. It would be interesting to see whether this is indeed the case.

Example 1. We point out that examples on the blue line segment coincide with the 1parameter family (6.6) in Remark 6.1. In fact, it follows from (6.8) that

$$
\begin{aligned}
& t_{0}=1, t_{2}=t_{1}, t_{3}=5 t_{1}^{2} /\left(4 t_{1}+1\right), t_{4}=t_{1}^{2}, t_{5}=t_{1}^{3}, t_{6}=t_{1}^{3}, \\
& a_{00}=1, a_{11}=1, a_{22}=a_{33}=1 / \sqrt{t_{1}}, a_{44}=1 / t_{1} .
\end{aligned}
$$

Moreover, substituting all the data into (6.3), we obtain that

$$
\left(\begin{array}{ccccc}
1 & 0 & -\sqrt{6} e^{\sqrt{-1} \theta_{2}} z^{2} & -4 \sqrt{\frac{t_{3}}{t_{3}}} e^{\sqrt{-1} \theta_{3}} z^{3} & -3 e^{\sqrt{-1} \theta_{4}} z^{4} \tag{7.4}\\
0 & 1 & \sqrt{6} e^{\sqrt{-1} \theta_{1}} z & 3 e^{\sqrt{-1} \theta_{2}} z^{2} & 2 \frac{\sqrt{t_{3}}}{t_{1}} e^{\sqrt{-1} \theta_{3}} z^{3}
\end{array}\right) .
$$

Figure 1. The level set S_{1}

Figure 2. The moduli space \mathcal{M}

Set $t_{1} \triangleq(5+3 \cos \theta) /(20-12 \cos \theta)$, then $\cos \theta=\left(20 t_{1}-5\right) / 3\left(4 t_{1}+1\right)$. Then $\theta_{0} \triangleq$ $0, \theta_{6} \triangleq 0$, and

$$
\theta_{1} \triangleq \theta-\frac{\beta_{0}-\beta_{1}}{2}, \theta_{2} \triangleq \theta, \theta_{3} \triangleq \theta+\frac{\beta_{0}+\beta_{1}}{2}, \theta_{4} \triangleq \theta, \theta_{5} \triangleq \theta-\frac{\beta_{0}-\beta_{1}}{2}
$$

satisfy (6.9), where

$$
\beta_{0}=\operatorname{Arg}\left(\frac{3+e^{\sqrt{-1} \theta}}{\sqrt{10+6 \cos \theta}}\right), \beta_{1}=\operatorname{Arg}\left(\frac{3-e^{\sqrt{-1} \theta}}{\sqrt{10-6 \cos \theta}}\right) .
$$

It is straightforward to verify that (6.6) differs from (7.4) by multiplying its third and fourth columns by $e^{\sqrt{-1}\left(\beta_{1}-\beta_{0}+\theta\right)}$, its last column by $e^{\sqrt{-1}\left(2\left(\beta_{1}-\beta_{0}\right)+\theta\right)}$, and performing a reparameterization $z \mapsto e^{\sqrt{-1}\left(\beta_{0}-\beta_{1}\right) / 2} z$. Note that $\pm \theta$ give the same t_{1}; they correspond to the two complex-conjugated solutions.
Proposition 7.2. The second fundamental form of a generic constantly curved holomorphic 2 -sphere of degree 6 is not parallel, except for that of the standard Veronese curve (1.1).
Proof. We need only show that $\|A\|^{2}$, the norm squared of the second fundamental form, is not constant. It follows from the Gauss equation that

$$
\begin{equation*}
\|A\|^{2}=20 / 3-\|\partial F / \partial z \wedge \partial F / \partial z\|^{2} /\left(9\left(1+|z|^{2}\right)^{8}\right) \tag{7.5}
\end{equation*}
$$

where F is the Plücker embedding of the holomorphic 2 -sphere in $G(2,5)$ into $\mathbb{C} P^{9}$ (see [22, p.6, p.9] for details). Note that $\|\partial F / \partial z \wedge \partial F / \partial z\|^{2}$ only vanishes at ramified points. Therefore, using Corollary 4.2 we can derive that the second term on the right-hand side of $\|A\|^{2}$ is not constant.
Remark 7.2. In submanifold geometry, the norm squared integral of the second fundamental form is an important extrinsic curvature functional. For generic constantly curved holomorphic 2-spheres of degree 6, this functional (denoted by \mathcal{W}) can be calculated from (6.1), (6.7), (6.8), (6.9) and (7.5) to be

$$
\begin{align*}
\int_{C P 1}|A|^{2} d S= & 2 \pi\left[20+\frac{16}{105\left(3 t_{0}+2\right)^{2}\left(2 \lambda+3 t_{0}\right)^{2}\left(4 \lambda t_{1}+t_{0}^{3}\right)^{2}}\left(1664 \lambda^{4} t_{1}^{2}+192 \lambda^{3}(\lambda+1) t_{1}^{2} t_{0}\right.\right. \\
& -144 \lambda\left(87 \lambda^{2}+548 \lambda+87\right) t_{1} t_{0}^{5}-48 \lambda^{2} t_{1} t_{0}^{4}\left(673(\lambda+1)-1863 t_{1}\right) \\
& +32 \lambda^{2} t_{1} t_{0}^{3}\left(1701(\lambda+1) t_{1}-374 \lambda\right)+144 \lambda^{2}\left(101 \lambda^{2}+4 \lambda+101\right) t_{1}^{2} t_{0}^{2} \tag{7.6}\\
& -9\left(249 \lambda^{2}+1396 \lambda+249\right) t_{0}^{8}-36 \lambda t_{0}^{7}\left(158(\lambda+1)-567 t_{1}\right) \\
& \left.\left.-2673(\lambda+1) t_{0}^{9}-4 \lambda t_{0}^{6}\left(574 \lambda+4671(\lambda+1) t_{1}\right)+3564 t_{0}^{10}\right)\right], \quad \lambda=1 / g .
\end{align*}
$$

It can be verified directly that the maximum of \mathcal{W} is 40π, and is attained by the standard example (1.1). The following figure, where two level sets of \mathcal{W}, in blue, as well as the moduli space \mathcal{M}, in brown, are shown, seems to suggest that \mathcal{W} takes its minimum value $184 \pi / 7$ at the example given by $t_{0}=1, t_{1}=1 / 16, g=1$, i.e., at

$$
\left(\begin{array}{ccccc}
1 & 0 & -\sqrt{6} z^{2} & -2 z^{3} & -3 z^{4} \tag{7.7}\\
0 & 1 & \sqrt{6} z & 3 z^{2} & 4 z^{3}
\end{array}\right) .
$$

Example 2. On the level set S_{1}, choose $t_{0}=11 / 6$. Then we can solve for $t_{1}=1331 / 864$. It gives an exact solution to (6.14),

$$
t_{0}=\frac{11}{6}, t_{1}=\frac{131}{864}, t_{2}=\frac{14641}{7776}, t_{3}=\frac{73205}{41472}, t_{4}=\frac{1771561}{1119744}, t_{5}=t_{6}=\frac{19487171}{17915904},
$$

It is checked that $X=Y=5 \sqrt{5} / \sqrt{33}$ and $Z=2$. from which the angles $\left\{\theta_{1}, \cdots, \theta_{5}\right\}$ can be solved.
Example 3. On the level set S_{1}, choose $t_{0}=(2 \sqrt{79}+20) / 21$. Then we can solve for $t_{1}=(2 \sqrt{79}+20) / 21$. It gives an exact solution to (6.14),

$$
\begin{aligned}
& t_{0}=t_{1}=t_{5}=t_{6}=(2 \sqrt{79}+20) / 21, t_{2}=t_{4}=(23 \sqrt{79}+209) / 189, \\
& t_{3}=(9+\sqrt{79}) / 8
\end{aligned}
$$

from which the angles $\left\{\theta_{1}, \cdots, \theta_{5}\right\}$ can be solved. Note that for this example, the diagonal matrix A has two distinct eigenvalues $a_{00}=a_{44} \neq a_{11}=a_{22}=a_{33}$.

Example 4. Start with the equations $P \triangleq X^{2}-4=0, Q \triangleq Y^{2}-4=0, R \triangleq Z^{2}-4=0$, with X, Y, Z given in (6.12) to express them in terms of the variables t_{0}, t_{1}, g, with $t_{6}=t_{1}^{3} /\left(t_{0}^{2} g\right)$ by (7.1). Continue to compute the derived resultants of the refined numerators $P^{\prime}, Q^{\prime}, R^{\prime}$ of P, Q, R, in terms of t_{0}, t_{1}, g, after removing powers of $g-1$, and those single-variable factors without positive solutions by, e.g., Sturm's algorithm for counting the exact number of distinct positive roots of a real polynomial, while setting aside possible candidate polynomials before proceeding with the next level of resultant computation; along the way, we heed the constraint that $\left(g t_{0}, g t_{1}, 1 / g\right)$ is a set of solution if $\left(t_{0}, t_{1}, g\right)$ is, by Proposition 7.1, to further narrow down the candidates. We end up with the exact equations for possible t_{0}, t_{1}, g :

$$
\begin{aligned}
& p \triangleq 3004245721 g^{6}-139634316726 g^{5}-67838574585 g^{4}-318786958820 g^{3}-67838574585 g^{2} \\
& \quad-139634316726 g+3004245721=0, \\
& q \triangleq 2537649 t_{0}^{6}-40347234 t_{0}^{5}+36454860 t_{0}^{4}-19711080 t_{0}^{3}+26076060 t_{0}^{2}-17915544 t_{0}+3452164=0, \\
& r \triangleq 6861904453295341780216896 t_{1}^{6}-57789440847499427495680896 t_{1}^{5}-3541432129528999644182160 t_{1}^{4} \\
& \\
& +2695787548715827169923680 t_{1}^{3}-242591843875043061525060 t_{1}^{2}-261056339362401426814176 t_{1} \\
& \\
& +53689575410338079139841=0 .
\end{aligned}
$$

Compute the Gröbner basis of the ideal $\left(P^{\prime}, Q,{ }^{\prime} R^{\prime}, p, q, r\right)$ to obtain the basis consisting of six elements of which we only record the two essential ones,

$$
\begin{aligned}
& E \triangleq 30407219135534569920865279281 g^{2} t_{1}-5684396631350441922486404084 g^{2} \\
& +4826381508202691775218328738 g t_{1}+8781109390742136392820835978 g \\
& +22087970177286319548246901485 t_{0}-37952752504503427337193407559 t_{1} \\
& -10129670167010754418270796864=0, \\
& G \triangleq 323983664320381367395969030814241 g^{3}-15097919249633508113716536736052777 g^{2} \\
& +24001947052912436490532391777190000 g t_{1}-10297270579570244241163795555112489 g \\
& -21160216103727154670480065729425120 t_{0}+38155570002907589892718590589124280 t_{1} \\
& -10753529104240427995602453394128335=0 .
\end{aligned}
$$

We obtain $t_{0} \triangleq R / S$ and $t_{1}=T / U$ in closed form of g, where

$$
\begin{aligned}
& R \triangleq 323983664320381367395969030814241 g^{5}-15046494988853004912329176221825959 g^{4} \\
& -8611085577295995251867740593198034 g^{3}+6658017307603866925677723269688366 g^{2} \\
& +8122830950478969874129540484608001 g+26132918116090821757236925434099385 \\
& S \triangleq 21160216103727154670480065729425120 g^{2}+20793797801629220801560324794395760 g \\
& +1305303435283084266467628002760120, \\
& T \triangleq-423618308217230277983078980100353 g^{3}+26861312395386909671099284789417865 g^{2} \\
& +2464682459146076205358051730246729 g+26749087059945119323559494796984559 \\
& U \triangleq 38088388986708878406864118312965216 g^{2}+37428836042932597442808584629912368 g \\
& +2349546183509551679641730404968216 .
\end{aligned}
$$

It is then checked that all the remaining equations in the basis are compatible with $p=0$. Now, $p=0$ has two positive real roots reciprocal to each other as the coefficients of p are symmetric, which are approximately $g \sim 0.0212731522$ and 47.0076078738 (Since all the above polynomial equations are exact, the listed numerical values are accurate up to the last digit, checked by the intermediate value theorem, for instance.) We then derive the corresponding values for t_{0} and t_{1} through R, S, T, U to yield

$$
\begin{aligned}
\left(t_{0}, t_{1}, g\right) & \sim(0.3184944933,0.1803379951,47.0076078738), \text { or } \\
& \sim(14.9716642533,8.4772577609,0.0212731522),
\end{aligned}
$$

accurate up to the last digit, in accord with Proposition 7.1; both give $X=Y=Z=2$. The second set gives the pointed end of the horn in Figure 2.

This is the third and the last example, aside from the two given in Remark 6.5 with $g=1$, for which there is only one constantly curved 2 -sphere in the corresponding Fano 3-fold $A\left(\mathcal{H}_{0}^{3}\right)$, where A is computed by (6.7).
Example 5. Set $t_{1} \triangleq t_{0}^{2} / 6$ in F given in (6.14) and factor out positive terms to yield

$$
\begin{aligned}
& f\left(g, t_{0}\right) \triangleq 190512 g^{4} t_{0}^{6}+20736 g^{4} t_{0}^{5}+95256 g^{3} t_{0}^{6}+27 g^{4} t_{0}^{4}-205416 g^{3} t_{0}^{5}-401301 g^{3} t_{0}^{4} \\
& -104328 g^{2} t_{0}^{5}-6264 g^{3} t_{0}^{3}-59319 g^{2} t_{0}^{4}+168282 g^{2} t_{0}^{3}+32913 g t_{0}^{4}+202140 g^{2} t_{0}^{2}+35388 g t_{0}^{3} \\
& +6720 g t_{0}^{2}+2034 t_{0}^{3}+19504 g t_{0}+2460 t_{0} 2+688 t_{0}-32=0 .
\end{aligned}
$$

It defines a plane algebraic curve C. We claim that $C^{*} \subset C$ falling in the rectangle \mathcal{R} given by $8 / 15 \leq t_{0} \leq 5,1475 / 10000 \leq g \leq 3$, is a smooth, connected closed curve contained in S, the double of the moduli space \mathcal{M}.

Firstly, observe that $\left(t_{0}, g\right)=(1,1)$ solves $f=0$ so that that C^{*} is not empty. It is also directly checked that $\frac{\partial f}{\partial t_{0}} / \frac{\partial f}{\partial g}=2$ at $\left(t_{0}, g\right)=(1,1)$, so that the implicit function theorem implies that $f=0$ is locally a curve $\left(t_{0}, g\left(t_{0}\right)\right)$ around $\left(t_{0}, g\right)=(1,1)$ with negative slope.

Setting $t_{0} \triangleq 8 / 15$ or 5 , and $g \triangleq 1475 / 10000$ or 3 , respectively, we solve $f\left(g, t_{0}\right)=0$ to attain (accurate up to the last digit for the exact polynomials)

$$
\begin{aligned}
& \text { for } t_{0}=8 / 15 \text {, } \exists \text { real } g \text {, while for } t_{0}=5, g \sim-0.4687373438 \text {, or }-0.0109931977 \text {; } \\
& \text { for } g=1475 / 10000, t_{0} \sim 0.0088038166 \text {, while for } g=3 \text {, } \\
& t_{0} \sim-0.5591240674,-0.4272041173,-0.0337884110,0.0005317397 \text {. }
\end{aligned}
$$

This means that the set C^{*} never leaves the rectangle \mathcal{R}, so that by analytic continuation of an algebraic curve, C^{*} consists of closed curves and, a priori, a few isolated points. The latter can be ruled out since these finitely many points must satisfy $f=\partial f / \partial t_{0}=\partial f / \partial g=0$ and the Gröbner basis associated with the ideal $\left(f, \partial f / \partial t_{0}, \partial f / \partial g\right)$ is $\left\{g-1,3 t_{0}+2\right\}$ whose zero locus $\left(t_{0}, g\right)=(-2 / 3,1)$ does not fall in the domain \mathcal{R}. As a result, it also implies that the finitely many closed curves constituting C^{*} are smooth and disconnected in \mathcal{R}.

By calculating the resultants of $f=\partial f / \partial t_{0}=0$ against g and t_{0} and solving for the roots, we verify that none of the possible pairs of $\left(t_{0}, g\right)$ satisfy (6.13) (see the remark below for the engaged computational error analysis for rational functions), except possibly for two points $\left(t_{0}, g\right)$ approximately at

$$
\begin{equation*}
(0.6547026351,2.9099350324), \text { or }(4.5794327836,0.1475263321), \tag{7.8}
\end{equation*}
$$

accurate up to the last digit. Since there exist at least two such points, this proves that C^{*} is only tangent to the horizontal lines, $g=$ constants, precisely at the two points; likewise, this is also true for the vertical line test. In particular, C^{*} has only one connected component as, otherwise, we would have more than two points tangent to horizontal or vertical lines.

We calculate the resultants of f and the numerator of $R \triangleq Z^{2}-4$ against g and t_{0} and solve for the roots, to confirm that the only point of intersection of the curve C^{*} and the boundary of $Z^{2} \leq 4$ occurs with tangency at

$$
\left(t_{0}, g\right) \sim(1.5271772661,0.4663765333)
$$

with the corresponding $X=Y \sim 1.8718004195$ and $Z=2$. It follows that C^{*} lies completely in $Z^{2} \leq 4$ since $\left(t_{0}, g\right)=(1,1)$ satisfies $Z^{2}<4$. In particular, the three constraints in 6.15) are satisfied by Remark 6.4.

Figure 3 depicts the curve C^{*} (in red) in S. Since it extends into the region with $g>1$, we apply the involution σ to flip it back into \mathcal{M} with $g \leq 1$. Figure 4 shows the resulting selfcrossing, flipped C^{*} (in red), which opens at $g=1$ for which $t_{0}=1$ or $t_{0} \sim 1.4542230103$. The region bounded by the three constraints is colored yellow.

Figure 3. The curve C^{*} in S

Figure 4. Folded C^{*} in \mathcal{M}

Remark 7.3. Let $f(x, y)=\sum_{m, n=0}^{M, N} a_{m n} x^{m} y^{n}$ and $l(x, y) \triangleq \sum_{i, j=0}^{I, J} b_{i j} x^{i} y^{j}$ over a rectangle $\mathcal{R}:[a, b] \times[c, d]$ with $a, c>0$. Assume $l(x, y)>0$ and define the positive function $\|f\|(x, y) \triangleq$
$\sum_{m, n=0}^{M, N}\left|a_{m n}\right| x^{m} y^{n}$ over \mathcal{R}. Given $\left(x_{0}, y_{0}\right),(x, y) \in \mathcal{R}$ with $0<\left|x_{0}-x\right|,\left|y_{0}-y\right|<h$, where $h>0$ is so small that $n h \ll 1$ for $n=M, N, I$, or J, then $p(x, y) \triangleq f(x, y) / l(x, y)$ satisfies the error estimate

$$
\begin{equation*}
\left|p\left(x_{0}, y_{0}\right)-p(x, y)\right| \leq(C(M, N)+C(I, J)) \sup _{(x, y) \in \mathcal{R}}(\|f\|(x, y) / l(x, y)), \tag{7.9}
\end{equation*}
$$

where, for $n \in \mathbb{N}$ with $n h<1$, we define $\gamma_{n} \triangleq n h /(1-n h)$, and

$$
C(p, q) \triangleq\left(e^{1 / a}-1\right) \gamma_{p}+\left(e^{1 / c}-1\right) \gamma_{q}+\left(e^{1 / a}-1\right)\left(e^{1 / c}-1\right) \gamma_{p} \gamma_{q}
$$

for $p, q \in \mathbb{N}$. (We leave it to the reader to verify.)
In Example 5, $x \triangleq g$ and $y \triangleq t_{0}, \mathcal{R}$ is the rectangle $[1475 / 10000,3] \times[8 / 15,5]$, and $f\left(g, t_{0}\right)$ is given in Example 5. Write, for H in (6.13),

$$
H=f\left(g, t_{0}\right) / l\left(g, t_{0}\right), \quad l\left(g, t_{0}\right) \triangleq 405000 t_{0}^{3} g^{2}\left(3 t_{0}+2\right)\left(3 g t_{0}+2\right)>0,
$$

Since $M=4, N=6, A=3$, and $B=5$, if we take $h \triangleq 10^{-20}$, the error estimate 7.9. gives that $C(M, N)+C(A, B)$ is in the magnitude of 10^{-17}, and an elementary minimax estimate derives $\|f\|(x, y) / g(x, y) \leq 1$ for all $(x, y) \in \mathcal{R}$, so that the error is in the magnitude of 10^{-17}. Consequently, all the engaged computations for the data satisfying $H \neq 0$ to obtain, e.g., (7.8) are accurate up to the tenth decimal place if we set the last significant decimal place to be the twentieth; all the undesired values, in fact, are such that their third decimal digits are nonzero to satisfy $H \neq 0$.

References

[1] A. Arbarello, M. Cornalba, P.A. Griffiths, J. Harris, Geometry of Algebraic Curves, Volume I, SpingerVerlag, New York, Berlin, Heidelberg, Tokyo, 1985.
[2] S. Bando, Y. Ohnita, Minimal 2-spheres with constant curvature in $P^{n}(\mathbb{C})$, J. Math. Soc. Japan, 39 (1987), 477-487.
[3] J. L. M. Barbosa, On minimal immersions of S^{2} into S^{n}, Trans. A.M.S., 210 (1975), 75-106.
[4] J. Bolton, G.R. Jensen, M. Rigoli, L.M. Woodward, On conformal minimal immersions of S^{2} into $\mathbb{C} P^{n}$, Math. Ann. 279 (1988), 599-620.
[5] O. Boruvka Sur les surfaces représentées par les fonctions sphériques de pre- miere espéce, J. Math. Pures Appl. 12 (1933), 337-383.
[6] R.L. Bryant, Minimal surfaces of constant curvature in \mathbb{S}^{n}, Trans. Amer. Math. Soc. 290 (1985), 259-271.
[7] F.E. Burstall, J.C. Wood, The construction of harmonic maps into complex Grassmannians, J. Differ. Geom. 23 (1986) 255-297.
[8] E. Calabi, Isometric imbedding of complex manifolds, Ann. Math. (2), 58 (1953), 1-23.
[9] E. Calabi, Minimal immersions of surfaces in Euclidean spheres, J. Differ. Geom. 1 (1967), 111-125.
[10] B. Y. Chen, Minimal surfaces with constant Gauss curvature Proc. A.M.S. 34 (1972), 504-508.
[11] S.S. Chern, J.G. Wolfson, Harmonic maps of the two-sphere into a complex Grassmann manifold II, Ann. Math. (2) 125 (1987), 301-335.
[12] Q.S. Chi, G. Jensen, and R. Liao, Isoparametric functions and flat minimal tori in $\mathbb{C} P^{2}$ Proc. A.M.S. 123 (1995), 2849-2854.
[13] Q.S. Chi, Z.X. Xie, Y. Xu, Structure of minimal 2-spheres of constant curvature in the complex hyperquadric, Adv. Math. 391(2021), 107967.
[14] Q.S. Chi, Y.B. Zheng, Rigidity of pseudo-holomorphic curves of constant curvature in Grassmann manifolds, Trans. Amer. Math. Soc. 313 (1989), 393-406.
[15] G. Castelnuovo, Ricerche di geometria della retta nello spazio a quattro dimensioni, Ven. Ist. Atti. 7 II (1891), 855-901.
[16] L. Delisle, V. Hussin, W. Zakrzewski. Constant curvature solutions of Grassmannian sigma models: (1) Holomorphic solutions, J. Geom. Phys. 66 (2013), 24-36.
[17] A.M. Din, W.J. Zakrzewski, General classical solutions in the $\mathbb{C} P^{n-1}$ model, Nuclear Phys. B 174 (1980), 397-406.
[18] A.M. Din, W.J. Zakrzewski, Classical solutions in Grassmannian σ models, Lett. Math. Physics, 5 (1981), 553-561.
[19] M. P. Do Carmo, N. R. Wallach, Minimal immersions of spheres into spheres Ann. Math. 93 (1971), 43-62.
[20] J. Fei, X.X. Jiao, Holomorphic 2-spheres in a complex Grassmann manifold $G(2,5)$, J. Grad. Univ. Chin. Acad. Sci.
[21] O. Forster Lectures on Riemann Surfaces, Springer-Verlag, New York, 1981.
[22] L. He, Degree of constantly curved holomorphic 2 -spheres in the complex Grassmannians $G(2, n+2 ; \mathbb{C})$, arXiv:2204.08116.
[23] L. He, X.X. Jiao, X.C. Zhou, Rigidity of holomorphic curves of constant curvature in $G(2,5)$, Differ. Geom. Appl. 43 (2015), 21-44.
[24] G.R. Jensen. Higher order contact of submanifolds of homogeneous spaces, volume 610. Springer, Cham, 1977.
[25] X.X. Jiao, J.G. Peng, Classification of holomorphic spheres of constant curvature in complex Grassmann manifold $G(2,5)$, Differ. Geom. Appl. 20 (2004), 267-277.
[26] X.X. Jiao, J.G. Peng, On holomorphic curves of constant curvature in the complex Grassmann manifold $G(2,5)$, Acta Math. Sci. Ser. B (Engl. Ed.), 31 (2011), 237-248.
[27] X.X. Jiao, Y. Xu, On non-士holomorphic conformal minimal two-spheres in a complex Grassmannian $G(2,5)$ with constant curvature, Differ. Geom. Appl. 59 (2018), 154-183.
[28] K. Kenmotsu, On minimal immersions of \mathbb{R}^{2} into \mathbb{S}^{n}, J. Math. Soc. Japan 28 (1976), 182-191.
[29] K. Kenmotsu, On minimal immersions of \mathbb{R}^{2} into $\mathbb{C} P^{n}(c)$, J. Math. Soc. Japan 37 (1985), 665-682.
[30] K. Kenmotsu, On minimal surfaces of constant curvature in two-dimensional complex space form, J. reine angew. Math 523 (2000), 69-101.
[31] Z.Q. Li, M.M. Jin, Constant curved holomorphic 2-spheres in $G(2,4)$, J. Math. Sci. Adv. Appl. 1 (2008), 547-561.
[32] Z.Q. Li, Z.H. Yu, Constant curved minimal 2-spheres in G(2, 4), Manuscr. Math. 100 (1999), 305-316.
[33] R. Miranda, Algebraic curves and Riemann surfaces, volume 5 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1995.
[34] S. Mukai, H. Umemura, Minimal rational threefolds, Algebraic geometry (Tokyo/Kyoto 1982), 490-518, Lecture Notes in Math. 1016, Springer, Berlin, 1983.
[35] C.K. Peng, X.W. Xu, Classification of minimal homogeneous two-spheres in the complex Grassmann manifold $G(2, n)$, J. Math. Pures Appl. 103 (2015), 374-399.
[36] J. Piontkowski, A normal form for curves in Grassmannians, Manuscr. Math. 89 (1996), 79-85.
[37] J. Piontkowski, A. Van de Ven, The automorphism group of linear sections of the Grassmannians $G(1, N)$, Doc. Math. 4 (1999), 623-664.
[38] K. Uhlenbeck, Harmonic maps into Lie groups (classical solutions of the chiral model), J. Differ. Geom. 30 (1989), 1-50.
[39] N.R. Wallach, Extension of locally defined minimal immersions into spheres, Arch. Math. (Basel) 21 (1970), 210-213.
[40] S. T. Yau, Submanifolds with constant mean curvature, Amer. J. Math. 96 (1974), 346-366.
Department of Mathematics and Statistics, Washington University, St. Louis, MO63130.
Department of Mathematics, China University of Mining and Technology (Beijing), Beijing 100083, China.
School of Mathematical Sciences, Nankai University, Tianjin 300071, China.
E-mail: chi@wustl.edu; xiezhenxiao@cumtb.edu.cn; xuyan2014@mails.ucas.ac.cn.

[^0]: 2020 Mathematics Subject Classification. 53C42, 53C55.
 This work was partially supported by NSFC No. 12171473 for the last two authors. The second author was also partially supported by the Fundamental Research Funds for Central Universities, and the third author was also partially supported by China Postdoctoral Science Foundation BX20200012.

