Covariance Problems

1) Suppose that X, Y are RV's with $\text{Var} \ X = 9$, $\text{Var} \ Y = 4$, and $\rho(X,Y) = -\frac{1}{6}$. Find
 (a) $\text{Var} \ (X + Y)$, (b) $\text{Var} \ (X - 3Y + 4)$, (c) $\text{Cov} \ (X, Y)$

2) Suppose that X, Y, Z are RV's with
 $\text{Var} \ X = 1$, $\text{Var} \ Y = 4$, $\text{Var} \ Z = 8$,
 $\text{Cov} \ (X, Z) = -1$, $\text{Cov} \ (X, Y) = 1$, $\text{Cov} \ (Y, Z) = 2$. Find
 (a) $\text{Cov} \ (X+Y, X+Z)$ (b) $\text{Var} \ (3X - Y - 2Z + 1)$

3) Suppose that X_1, \ldots, X_n are RV's s.t. the variance of each RV is 1 and the correlation between each pair of different variables is $\frac{1}{4}$. Find
 $\text{Var} \left(\sum_{i=1}^{n} X_i \right)$.

4) If $\text{Var} \ X = 9$, $\text{Var} \ Y = 4$, use Schwarz's inequality to find the largest and smallest possible values of $\text{Cov} \ (X, Y)$.
5) Suppose that discrete RV's have p.f. specified by the table

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.3</td>
<td>.2</td>
<td>.1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>.2</td>
<td>.1</td>
<td>.1</td>
<td></td>
</tr>
</tbody>
</table>

Find $E(XY)$ and $\text{Cov}(X,Y)$ and $f(x,y)$.

Answers

1) (a) 11, (b) 51, (c) -1

2) (a) 3, (b) 59

3) $n + \frac{n(n-1)}{4}$

4) Largest = 6, Smallest = -6

5) $E(XY) = 6.6$, $EX = 1.4$, $EY = 4.7$

$\text{Cov}(X,Y) = .02$

$E(X^2) = 2.2$, $\text{Var} X = .24$

$E(Y^2) = 23.7$, $\text{Var} Y = .61$

$f(x,y) = .052$