Exam 1

1. There are 16 possible equally likely outcomes. By counting, find

- \(P(6) = \frac{3}{16} \),
- \(P(8) = \frac{1}{16} \),
- \(P(10) = 0 \)

2.

\[
P(I) = P(I|S)P(S) + P(I|T)P(T)
\]

\[
= (.8)(.6) + (.3)(.4) = .6
\]

\[
P(I|S)P(I) = P(I|T)P(T)
\]

\[
P(T|I)(.6) = (.3)(.4)
\]

\[
P(T|I) = \boxed{.2}
\]

3.

\[
P(V \cup W) = P(V) + P(W) - P(V \cap W)
\]

- \(P(V \cap W) = P(V|W)P(W) = (.8)(.6) = .48 \)

\[
P(V \cup W) = .5 + .6 - .48 = .62
\]

4.

- \(P(n \text{ all off by stop } m) = \left(\frac{m}{n}\right)^k \)

- \(P(n \text{ no one gets off at stop } m) = \left(\frac{n-1}{n}\right)^k \)

[Each person has chance \(\frac{m}{n} \) to get off by stop \(m \), etc.]

5.

\[
P(8 \text{ men bowl}, 7 \text{ fish}, 5 \text{ yoga}) = \binom{20}{8,7,5} \binom{10}{4,3,3}
\]

\[
P(0 \text{ and } W \text{ on some team}) = \frac{\binom{28}{10,10,8} + \binom{28}{12,8,8} + \binom{28}{12,10,6}}{\binom{30}{12,10,8}}
\]
\(P_n \) (all colors appear) = \(4! \left(\frac{6}{36} \right) \left(\frac{8}{36} \right) \left(\frac{10}{36} \right) \left(\frac{12}{36} \right) \)

\(P_n \) (all have same color) = \(P_n \) (all W) + ---

\[= \left(\frac{6}{36} \right)^4 + \left(\frac{8}{36} \right)^4 + \left(\frac{10}{36} \right)^4 + \left(\frac{12}{36} \right)^4 \]

\(P_n \) (GWG) = \(\frac{10}{36} \cdot \frac{6}{35} \cdot \frac{9}{34} \)

\(P_n \) (at least one green) = 1 - \(P_n \) (no green) = 1 - \(\frac{26}{36} \cdot \frac{25}{35} \cdot \frac{24}{34} \)

\[P = \begin{bmatrix} .6 & .4 \\ .3 & .7 \end{bmatrix} \text{ when snow = state 1} \]
\[\text{Main = state 2} \]

\(\vec{v} = (.2, .8) \)

\(\vec{v} \cdot P = (.2, .8) \cdot P = (.36, .64) \)

\(P_n \) (snow tomorrow) = .36