1. From a previous homework we have the following:

\[f(x,y) = \begin{cases} \frac{2}{5} \frac{2}{2x+3y} & 0 \leq x \leq 1, 0 \leq y \leq 1 \\ 0 & \text{otherwise} \end{cases} \]

\[f_1(x) = \begin{cases} \frac{2}{5} (2x+3y) & 0 \leq x \leq 1 \\ 0 & \text{else} \end{cases} \quad f_2(y) = \begin{cases} \frac{2}{5} (3y+1) & 0 \leq y \leq 1 \\ 0 & \text{else} \end{cases} \]

\[g_1(x,y) = \frac{2x+3y}{1+3y} \quad 0 \leq x, y \leq 1 \]

\[g_2(y|x) = \frac{2x+3y}{2x+3y} \quad 0 \leq x, y \leq 1 \]

a) Compute \(E(Y|X) \). Verify for yourself \(E(E(Y|X)) = E(Y) \)

\[E(Y|X) = \int_0^1 \frac{2x+3y}{2x+3y} \, dy = \int_0^1 \frac{2xy+3y^2}{2x+3y} \, dy \]

\[= \frac{1}{2x+\frac{3}{2}} \left[(xy^2+y^3) \right]_{y=0}^{y=1} = \frac{x+1}{2x+\frac{3}{2}} \]

So \(E(Y|X) = \frac{x+1}{2x+\frac{3}{2}} \)

\[E(E(Y|X)) = E\left(\frac{x+1}{2x+\frac{3}{2}} \right) = \int_0^1 \frac{2}{5} \frac{x+1}{2x+\frac{3}{2}} \, dx \]

\[= \frac{2}{5} \int_0^1 (x+1) \, dx = \frac{2}{5} \left[\left(\frac{x^2}{2} + x\right) \right]_0^1 = \frac{2}{5} \left(\frac{3}{2} \right) = \frac{3}{5} \]

\[E(Y) = \int_0^1 \frac{2}{5} (3y^2+y) \, dy = \frac{2}{5} \left[\left(y^3 + \frac{y^2}{2} \right) \right]_0^1 = \frac{2}{5} \left(\frac{3}{2} \right) = \frac{3}{5} \]

So \(E(E(Y|X)) = E(Y) \).
b) If the value of the math score X is disregarded, what predicted value of Y has the smallest m.s.e.? What is the value of this m.s.e.?

The predicted value of Y with the smallest m.s.e. is $Y = E(Y) = 3/5$

$$\text{Var}(Y) = E(Y^2) - [E(Y)]^2$$

$$= \frac{2}{5} \int_0^1 (3y^3 + y^2) \, dy - \left(\frac{3}{5} \right)^2$$

$$= \frac{2}{5} \left[\left(\frac{3}{4} y^4 + \frac{1}{2} y^3 \right) \bigg|_0^1 \right] - \frac{9}{25} = \frac{2}{5} \left(\frac{3}{4} + \frac{1}{2} \right) - \frac{9}{25}$$

$$= \frac{11}{150} \approx 0.073$$

So the value of this m.s.e. is $\text{Var}(Y) = \frac{11}{150} \approx 0.073$

c) If $X = 0.1$, what predicted Y has the smallest m.s.e.? What is the value of this m.s.e.?

The predicted value of Y with the smallest m.s.e. is $Y = E(Y | 0.1) = \frac{0.1 + 1}{2(0.1) + 1} = \frac{11}{17} \approx 0.647$

$$\text{Var}(Y | X) = E(Y^2 | X) - [E(Y | X)]^2$$

$$E(Y^2 | X) = \int_0^1 y^2 g_2(Y | X) \, dy = \frac{1}{2X + 3/2} \int_0^1 (2xy^2 + 3y^3) \, dy$$

So $\text{Var}(Y | 0.1) = \frac{10}{17} \int_0^1 (0.2y^2 + 3y^3) \, dy - \frac{121}{289} = \frac{107}{1734} \approx 0.0617$
If \(x=0.1, \) what predicted value of \(y \) has smallest m.a.e.? Write down a definite integral that gives the value of this m.a.e.

We want the median of \(g_2(y|0.1) \).

\[
\frac{1}{2} = \int_{0}^{\infty} \frac{2+3y}{2+3/2} \, dy \iff \frac{1}{2} = \frac{10}{17} \int_{0}^{\infty} (2+3y) \, dy
\]

\[
\iff \frac{17}{20} = 2m + \frac{3}{2} m^2
\]

\[
\iff 30m^2 + 4m - 17 = 0
\]

\[
\iff m = \frac{-4 + \sqrt{2086}}{100}
\]

So the predict value of \(y \) that has the smallest m.a.e. is \(y = \frac{-1}{15} + \frac{1}{30} \sqrt{514} \approx 0.689 \)

The value of this m.a.e. is \(E(|y-m|) = \int_{0}^{1} |y-m| g_2(y|0.1) \, dy = \int_{0}^{1} |y-m| \frac{2+3y}{1.7} \, dy \), where \(m \) is as above

Sketch a graph of \(E(y|x) \) over \(0 \leq x \leq 1 \).

\[
E(y|x) = \frac{x+1}{2x+3/2}
\]

\[
E(y|0) = \frac{2}{3}
\]

\[
E(y|0.5) = 0.6
\]

\[
E(y|1) = \frac{4}{3}
\]
calculate \(\text{Cov}(X, Y) \) & \(\rho(X, Y) \).

From before we have \(\text{Var}(Y) = \frac{11}{150} \).

We compute the following:

\[
E(X) = \int_0^1 \left(2x^2 + \frac{3}{2} x \right) \, dx = \frac{2}{5} \left[\left(\frac{2}{5} x^3 + \frac{3}{4} x^2 \right) \right]_0^1 = \frac{2}{5} \left(\frac{2}{5} + \frac{3}{4} \right) = \frac{17}{60}
\]

\[
E(X^2) = \frac{2}{5} \int_0^1 (2x^3 + \frac{3}{2} x^2) \, dx = \frac{2}{5} \left(\frac{1}{2} x^4 + \frac{1}{2} x^3 \right) \bigg|_0^1 = \frac{3}{5}
\]

\[
\Rightarrow \text{Var} X = E(X^2) - E(X)^2 = \frac{3}{5} - \left(\frac{17}{60} \right)^2 = \frac{79}{1500}
\]

\[
E(XY) = \frac{2}{5} \int_0^1 \int_0^1 (2x^2y + 3y^2x) \, dy \, dx = \frac{2}{5} \int_0^1 (x^2 + x) \, dx = \frac{2}{5} \left(\frac{x^3}{3} + \frac{x^2}{2} \right) \bigg|_0^1 = \frac{1}{3}
\]

So \(\text{Cov}(X, Y) = E(XY) - \mu_X \mu_Y = \frac{1}{3} - \left(\frac{17}{60} \right) \left(\frac{3}{5} \right) = -\frac{1}{150} \)

Also, \(\rho(X, Y) = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y} = -\frac{\frac{1}{150}}{\sqrt{\left(\frac{11}{150} \right) \left(\frac{79}{1500} \right)}} \approx -0.0876 \)

These results indicate a negative association between students' math & music scores.

So an increase in math score is accompanied on the whole by a slight decrease in music score.
We are given $Q = s_1R_1 + s_2R_2$, $E(R_1) = 200$, $\text{Var}(R_1) = 4$, $\text{Var}(R_2) = 25$, $\rho(R_1, R_2) = -\frac{1}{2}$. Want to find $\text{Cov}(R_1, R_2)$ & a formula for $\text{Var}Q$.

\[
\rho(R_1, R_2) = \frac{\text{Cov}(R_1, R_2)}{\text{Var}R_1 \text{Var}R_2} \implies -\frac{1}{2} = \frac{\text{Cov}(R_1, R_2)}{(2)(5)}
\]

Thus, $\text{Cov}(R_1, R_2) = -5$

Now $\text{Var}Q = \text{Var}(s_1R_1 + s_2R_2) = s_1^2 \text{Var}(R_1) + s_2^2 \text{Var}(R_2) + 2s_1s_2 \text{Cov}(R_1, R_2)$.

So $\text{Var}Q = 4s_1^2 + 25s_2^2 - 10s_1s_2$

Suppose you want the mean return to be $1,000. So how many shares of stocks A & B should you buy so as to minimize the volatility of Q?

So we want $1000 = E(Q) = s_1E(R_1) + s_2E(R_2) = 100s_1 + 200s_2$

$\implies s_1 = 10 - 2s_2$

$\implies \text{Var}Q = 4(10 - 2s_2)^2 + 25s_2^2 - 10(10 - 2s_2)s_2$

So $(\text{Var}Q)' = -160(10 - 2s_2) + 50s_2 - 100 + 40s_2 = 18s_2 - 260$

The volatility of Q is minimized when $(\text{Var}Q)' = 0$, which happens when $s_2 = \frac{130}{18}$

Note $s_2 = \frac{130}{18} \implies s_1 = 10 - 2(\frac{130}{18}) = \frac{350}{18}$
So the volatility of \(\text{Var}(q) \) is minimized when we buy
\[s_1 = 35\% \] shares of A \\ & \[s_2 = 15\% \] shares of B.

If we can only buy whole shares of stock, then the volatility of \(\text{Var}(q) \) is minimized when we buy
\[s_1 = 6 \] shares of A \\ & \[s_2 = 2 \] shares of B.

3] If a student is selected at random from the entire group that took the test, what is the expected value of her score?

Let \(X \) denote the number of her school (so \(X=1 \) for school A, \(X=2 \) for school B, & \(X=3 \) for school C).

Let \(Y \) denote her exam score.

\[
\text{Then } E(Y) = E[E(Y|X)] = (0.2)(80) + (0.3)(76) + (0.5)(84) = 80.2
\]