1. Do problem 4, p.469, but take f_0 to be the pdf of a beta (4,1).

2. Do problem 7, p. 470, but in part (b) take $n = 5$. To get started, first write down the likelihood ratio f_1/f_0 where f_i is the likelihood function for $N(\mu, \sigma_i^2)$. Then plug in the appropriate values for σ_i, and set $Y = \sum_{i=1}^{n} (X_i - \mu)^3$.

3. Problems 15 and 16, p. 478. To show that UMP's exist, verify that the appropriate likelihood function has a monotone likelihood ratio in a statistic T which you should identify.

5. Consider the situation of Problem 2, p.525, but take $f_0(x) = 2x$ for $0 < x < 1$, $f_0(x) = 0$ for other x, and suppose that the loss from deciding that f_1 is correct when in fact f_0 is correct is 6 units.

 (a) Write down the associated loss function in terms of a cost matrix.

 (b) Describe the test which minimizes the expected loss. "Describe" here means specify the values of X for which we would decide that f_0 is correct.

 (c) Calculate the value of the minimal expected loss.

Recommended Problems:

§8.2: 1-10.

§8.3: 8, 9, 13, 14.
§8.4: 1, 3, 5, 10.

§8.8: 2, 3.

R1. Suppose that $X \sim N(\mu, \sigma^2)$ with σ known and μ unknown. We saw that if $\mu_0 < \mu_1$, than among all tests δ of $H_0 : \mu = \mu_0$ against $H_1 : \mu = \mu_1$ with $\alpha(\delta) \leq \alpha_0$, the test δ^* which minimizes $\beta(\delta)$ has the form: Reject H_0 if $\bar{X}_n > k$. In the problem below take $\alpha_0 = .10$.

(a) Find k as a function of some or all of the variables μ_0, μ_1, σ^2, and n.

(b) If μ_0, μ_1, σ^2 are fixed, what happens to k as $n \to \infty$?

(c) Suppose again that μ_0, μ_1, σ^2 are fixed. Verify that $\beta(\delta^*) \to 0$ as $n \to \infty$. Then find a formula the smallest n for which $\beta(\delta^*) \leq .01$.