1. We'll proceed by induction. Let $S = \{ n \in \mathbb{N} : n \neq n' \}$.
 First, note that $1 \in S$. If it weren't, $1 = 1'$, so 1 would be the successor of something, violating Peano Axiom #4.

 Next, suppose $n \in S$. We want to show $n' \notin S$.
 Suppose $n' \notin S$. Then $(n')' = n'$, and so, by Peano Axiom #3, $n' = n$, a contradiction.

 Since we have shown $1 \in S$ and that $n \in S \implies n' \notin S$, we may conclude that $S = \mathbb{N}$ by PA #5.

2. Fix $m \in \mathbb{N}$. Let $S = \{ n \in \mathbb{N} : m + n \neq n' \}$.
 First, note that $1 \in S$. If it wasn't, $m + 1 = 1$, and so $m' = 1$, violating PA #4.

 Suppose $n \in S$. In anticipation of a contradiction, suppose $n' \notin S$; i.e., that $m + n' = n'$. But $m + n' = (m + n)'$, and so, by PA #3, $m + n = n$, a contradiction. Thus, $n' \notin S$.

 By induction, we may conclude $S = \mathbb{N}$. Since our choice of m was arbitrary, we have that $m + n \neq n$ for all $m, n \in \mathbb{N}$.

3. Fix $m \in \mathbb{N}$. Let $S = \{ n \in \mathbb{N} : m \cdot n \neq n' \}$.
 First, note that $1 \in S$. If it wasn't, we would have $m \cdot 1 = 1$, and so $m' = 1$, contradiction PA #4.

 Suppose $n \in S$. In anticipation of a contradiction, suppose $n' \notin S$. Then $m \cdot n' = 1$, so $(m \cdot n)' = 1$ by Theorem 1.
 However, this violates PA #4, so $n' \in S$.

 By induction, $S = \mathbb{N}$, and since m was arbitrary, we have that $m \cdot n \neq 1$ for all $m, n \in \mathbb{N}$.
4. Fix \(m, n \in \mathbb{N} \) such that \(m \neq n \). Let \(S = \{ p \in \mathbb{N} : m + p \neq n + p \} \).

First, \(1 \in S \). If it wasn't, \(m1 = n1 \)

\[\Rightarrow m' = n' \]

\[\Rightarrow m = n \quad \text{by PA \#3} \]

But \(m \neq n \). Thus, \(1 \in S \).

Now suppose \(p \in S \). In anticipation of a contradiction, suppose \(p' \not\in S \). Then:

\[m + p' = n + p' \]

\[\Rightarrow (m + p)' = (n + p)' \quad \text{by Theorem 1} \]

\[\Rightarrow m + p = n + p \quad \text{by PA \#3} \]

But that contradicts the fact that \(p \in S \). Therefore, \(p' \in S \), and so by induction, \(S = \mathbb{N} \).

Our choice of \(m, n \in \mathbb{N} \), \(m \neq n \), was arbitrary, and so \(m + p \neq n + p \) for all \(m, n, p \in \mathbb{N} \).