1. Let $S = \{1\} \cup \{m \in \mathbb{N} : m+1 \text{ and } m = q^l \text{ for some } q \in \mathbb{N}\}$.

First we'll show $S = \mathbb{N}$ using induction.

Well, $1 \in S$ by definition. Suppose $m \in S$. Then $m+1$ by PA $\#4$, and m is a predecessor of $m+1$ so $m \in S$. By induction, $S = \mathbb{N}$.

Now we'll show uniqueness. Let $m \in \mathbb{N}$, and suppose $m = q^l$ and $m = r^l$. Then $q^l = r^l$, so by PA $\#3$, $q = r$. Thus, the predecessor exists and is unique.

2. c) Fix $m \in \mathbb{N}$. Let $S = \{n \in \mathbb{N} : mn = nm\}$.

First, since $m \cdot 1 = m$ and $1 \cdot m = m$, we have that $m \cdot 1 = 1 \cdot m$, so $1 \in S$.

Now assume $n \in S$. Then $mn' = mn + m$ by definition 3

$= nm + m$ by induction hypothesis

$= n'm$ by Theorem 4

thus, $n' \in S$, so by induction, $S = \mathbb{N}$. Since m was arbitrary, we have that $mn = nm \ L m, n \in \mathbb{N}$.

6) Fix $m, n \in \mathbb{N}$. Let $S = \{p \in \mathbb{N} : (mn)p = m(np)\}$.

First, since $(mn) \cdot 1 = mn = m(n \cdot 1)$, $1 \in S$.

Suppose $p \in S$. Then $(mn)p' = (mn)p + mn$ by definition 3

$= m(np) + mn$ by induction hypothesis

$= m(np + n)$ by distrib

$= m(np')$ by Theorem 4

Thus, $p' \in S$. By induction, $S = \mathbb{N}$. Since the choice of mn was arbitrary, we may conclude that $(mn)p = m(np) \ L m, n, p \in \mathbb{N}$.
3. Suppose, in anticipation of a contradiction, that there exist \(n, m \in \mathbb{N} \) such that \(m < n \) and \(n < n+1 \).

Then there exist \(p, q \in \mathbb{N} \) such that \(n + p = m \) and \(n + q = n + 1 \).

So \((n+p) + q = n + 1 \) by substitution

\[n + (p+q) = n + 1 \] by associativity

\[p+q = 1 \] by cancellation

But this contradicts HW #1, problem 3. Thus, no such \(m/n \) exist.

4. Let \(S = \mathbb{N} \times \mathbb{N} \). Define an equivalence relation \(\sim \) on \(S \) by setting \((x, y) \sim (u, v) \) when \(xv(y+u) = yu(x+u) \).

i) First we'll show \(\sim \) is actually an equivalence relation.

Reflexivity Since \(xy(y+x) = yx(x+y) \) by commutativity of + and \(\cdot \)

\((x, y) \sim (x, y) \).

Symmetry If \((x, y) \sim (u, v) \), we have \(xy(y+u) = yu(x+u) \)

\[\Rightarrow xv(y+u) = uy(x+u) \] by commutativity

\[\Rightarrow uy(v+x) = vx(u+y) \]

\[\Rightarrow (u, v) \sim (x, y) \)

Transitivity Suppose \((x, y) \sim (u, v) \) and \((u, v) \sim (a, b) \).

Then \(xv(y+u) = yu(x+v) \) and \(ub(v+a) = va(u+t) \)

\[\Rightarrow ab \cdot xv(y+u) = ab \cdot yu(x+v) \] and \(xy \cdot ub(v+a) = xy \cdot va(u+t) \)

Distributing and adding the two equations together yields:

\[abxy + abxu + xyuv + xyub = abyu + abuv + xyvau + xyvub \]

Cancelling as above yields:

\[abxu + xyuv = abyu + xyvau \]

\[\Rightarrow uvxb(a+y) = uxya(b+x) \] commutativity, distributivity

\[\Rightarrow xb(y+a) = ya(x+b) \] by cancellation, commutativity

\[\Rightarrow (x, y) \sim (a, b) \]
(ii) Let us determine which pairs \((x,y)\) are equivalent to \((1,1)\).

\[(x, y) = (1, 1) \Rightarrow x \cdot 1 = y \cdot 1 \Rightarrow x = y\]

Thus, any pair \((x, x) = (1,1)\), i.e.

\((2,2), (3,3), (4,4), \text{ etc.}\)