1) A particle is moving along the x-axis and its position for x ≥ 0 is given by the formula \(x = \frac{1}{3} t^3 - 2t^2 + 3t \). On what interval(s) is the velocity of the particle decreasing?

Solution: \(v = dx/dt = t^2 - 4t + 3 \), \(dv/dt = 2t - 4 = 2(t - 2) \). The velocity \(v \) is decreasing where \(dv/dt < 0 \). That is, on the open interval \((0, 2)\).

2) A rock is thrown vertically upward from the edge of a stand on the moon's surface, which is 10 feet above the surface. Its height in meters after \(t \) seconds is given by \(h(t) = 24t - 0.8t^2 + 10 \) (e.g. \(h(0) = 10 \)). Find the total distance traveled by the rock from the time it is thrown up until the time it passes the stand on its way down.

Solution: \(v = 24 - 1.6t = 0 \) when \(t = 24/1.6 = 15 \). That means that after 15 seconds the rock reaches its highest point. 15 seconds later it will pass the stand on the way down (you can check that \(h(30) = 10 \)). Total distance traveled will then be \(s(15) - s(0) + |s(30) - s(15)| = 180 + 180 = 360 \) meters.

3) Find an equation for the normal line to the curve \(y = x \tan(x) \) at the point \((\pi, 0)\).

Solution: \(dy/dx = \tan(x) + x \sec^2(x) \). For \(x = \pi \) we get \(dy/dx = \pi \) (\(\tan(\pi) = 0 \) and \(\sec(\pi) = -1 \)). Then slope of normal line is \(-\frac{1}{\pi}\) and equation of normal line is \(y = -\frac{1}{\pi}(x - \pi) = -\frac{1}{\pi}x + 1 \).

4) Eliminate the parameter to find a Cartesian equation for the curve \(x = -1 + 3 \sec(t) \quad y = 2 + 3 \tan(t) \)

Solution: \(x + 1 = 3 \sec(t) \) and \(y - 2 = 3 \tan(t) \). So \((x+1)^2 = 9 \sec^2(t)\) and \((y - 2)^2 = 9 \tan^2(t) \). From the identity \(1 + \tan^2(t) = \sec^2(t) \) we get that \(9 + 9 \tan^2(t) = 9 \sec^2(t) \).

So we get the cartesian equation \(9 + (y - 2)^2 = (x+1)^2 \). This can also be written as \((x+1)^2 - (y - 2)^2 = 9\), which is a hyperbola.
5) From the parametric equations \(x = t - \sin(t), \ y = 1 - \cos(t) \), find the second derivative, \(\frac{d^2y}{dx^2} \), at \(t = \frac{\pi}{3} \).

Solution:

\[
y' = \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{1 + \sin(t)}{1 - \cos(t)}.
\]

Next we have \(\frac{d^2y}{dx^2} = \frac{dy'}{dx} = \frac{dy'/dt}{dx/dt} \).

Now \(dy'/dt = \frac{\cos(t)(1 - \cos(t)) - (1 + \sin(t))(\sin(t))}{(1 - \cos(t))^2} = \frac{\cos(t) - \sin(t) - 1}{(1 - \cos(t))^2} \)

and

\(dx/dt = (1 - \cos(t)) \).

Then \(\frac{dy'/dt}{dx/dt} = \frac{\cos(t) - \sin(t) - 1}{(1 - \cos(t))^2} = \frac{1 - \sqrt{3}}{2} = - (2\sqrt{3} + 2) \) at \(t = \frac{\pi}{3} \).

6) If \(f(x) = x \cdot \ln(e^{\sqrt{x}}) \), find \(f'(1) \).

Solution:

\(f(x) = x \cdot \sqrt{x} \cdot \ln(e) = x^{3/2} \). Then \(f'(x) = \frac{3}{2} \sqrt{x} \) and \(f'(1) = \frac{3}{2} \).

7) Find an equation for the tangent line to the curve \(x^3 + y^3 = 9xy \) at the point \((2, 4) \).

Solution:

\(3x^2 + 3y^2 \frac{dy}{dx} = 9y + 9x \frac{dy}{dx} \). For \(x = 2 \) and \(y = 4 \) we get

\(12 + 48 \frac{dy}{dx} = 36 + 18 \frac{dy}{dx} \). So \(30 \frac{dy}{dx} = 24 \) and \(\frac{dy}{dx} = \frac{4}{5} \).

Equation for tangent line is \((y - 4) = \frac{4}{5} (x - 2) \).

8) If \(f(x) = (\tan^{-1}(x))^2 \) then \(f'(1) = \).

Solution:

\(f'(x) = 2 (\tan^{-1}(x)) \cdot \frac{1}{1 + x^2} \). Then \(f'(1) = 2 \cdot \frac{\pi}{4} = \frac{\pi}{2} \).

9) Find the slope of the tangent line to the curve \(x \cdot \arctan(y) + x \cdot y = \frac{\pi + 4}{4} \) at the point \((1, 1) \).

Solution:

\(\arctan(y) + \frac{x}{1 + y^2} \frac{dy}{dx} + y + x \frac{dy}{dx} = 0 \). For \(x = 1 \) and \(y = 1 \) we get

\(\frac{\pi}{4} + \frac{1}{2} \frac{dy}{dx} + 1 + \frac{dy}{dx} = 0 \). \(\frac{3}{2} \frac{dy}{dx} = - (\frac{\pi + 4}{4}) \). Then \(\frac{dy}{dx} = - (\frac{\pi + 4}{6}) \).
10) If \(f(x) = x \cdot \log_3(2^{\sqrt{x}}) \), find \(f'(1) \).

Solution:
\[
f'(x) = \log_3(2^{\sqrt{x}}) + x \cdot \frac{1}{\ln(3)} \cdot \frac{1}{2\sqrt{x}} \cdot \ln(2)
\times 2^{\sqrt{x}} \cdot \frac{1}{2\sqrt{x}} =
\log_3(2^{\sqrt{x}}) + \frac{1}{2} \cdot \frac{\ln(2)}{\ln(3)} \sqrt{x}.
\]
\[f'(1) = \log_3(2) + \frac{1}{2} \cdot \frac{\ln(2)}{\ln(3)} = \frac{3}{2} \cdot \frac{\ln(2)}{\ln(3)}.\]

Another way of doing this: \(f(x) = x \cdot \frac{1}{\ln(3)} \ln(2^{\sqrt{x}}) = x \cdot \frac{1}{\ln(3)} \cdot \sqrt{x} \cdot \ln(2) =
\frac{\ln(2)}{\ln(3)} \cdot x^{3/2}. \) So \(f'(x) = \frac{3}{2} \cdot \frac{\ln(2)}{\ln(3)} \cdot x^{1/2} \) and \(f'(1) = \frac{3}{2} \cdot \frac{\ln(2)}{\ln(3)} \) (as before).

11) If \(f(x) = x^{e^x} \) then find \(f'(1) \).

Solution: By logarithmic differentiation we have \(\ln(y) = \ln(x^{e^x}) = e^x \ln(x) \).
Then \(\frac{1}{y} \frac{dy}{dx} = e^x \ln(x) + e^x \frac{1}{x} \) and \(f'(x) = x^{e^x} (e^x \ln(x) + e^x \frac{1}{x}) \).
Finally we get that \(f'(1) = e \) (\(\ln(1) = 0 \) and \(1^e = 1 \)).

12) If \(f(x) = \sin^{-1}(\tan(x)) \) then find \(f'(x) \).

Solution:
\[
f'(x) = \frac{1}{\sqrt{1 - \tan^2(x)}} \cdot \sec^2(x) = \frac{\sec^2(x)}{\sqrt{1 - \tan^2(x)}}.
\]

13) If \(f(x) = x \cdot 4^{-x^2} \) then find \(f'(x) \).

Solution:
\[
f'(x) = 4^{-x^2} + x \cdot \ln(4) 4^{-x^2} \cdot -2x = 4^{-x^2}(1 - 2 \ln(4) x^2).
\]

14) Use logarithmic differentiation to find \(\frac{dy}{dx} \) if \(y = \sqrt{\frac{x^3 + 1}{\tan(x) \cdot \sec(x)}} \).

Solution:
\[
\ln(y) = \frac{1}{4} \ln\left(\frac{x^3 + 1}{\tan(x) \cdot \sec(x)}\right) = \frac{1}{4} \left(\ln(x^3 + 1) - \ln(\tan(x)) - \ln(\sec(x)) \right).
\]
\[
\frac{1}{y} \frac{dy}{dx} = \frac{1}{4} \left(\frac{3x^2}{x^3 + 1} - \frac{\sec^2(x)}{\tan(x)} - \frac{\sec(x) \tan(x)}{\sec(x)} \right)
\]
Then \(\frac{dy}{dx} = \frac{1}{4} \cdot \sqrt{\frac{x^3 + 1}{\tan(x) \cdot \sec(x)}} \cdot \left(\frac{3x^2}{x^3 + 1} - \frac{\sec^2(x)}{\tan(x)} - \tan(x) \right) \).
15) For \(f(x) = 12 \log_8(\ln(x)) \), find \(f'(e) \).

Solution: \(f'(x) = \frac{12}{\ln(8)} \cdot \frac{1}{\ln(x)} \cdot \frac{1}{x} \). Then \(f'(e) = \frac{12}{\ln(8) \cdot e} \).

16) There are two points where the curve \(x^2 + xy + y^2 = 9 \) crosses the \(x\)-axis. At those two points the **tangent lines** are parallel. Find the common **slope**.

(Hint: Point on the \(x\)-axis has coordinates \((a, 0)\)).

Solution: For \(y = 0 \) we get \(x^2 = 9 \). The points are then \((-3, 0), (3, 0)\).
By implicit differentiation we have \(2x + y + x \frac{dy}{dx} + 2y \frac{dy}{dx} = 0 \). For \(y = 0 \), \(2x + x \frac{dy}{dx} = 0 \). For \(x = \pm 3 \) we have \(\frac{dy}{dx} = -2 \). Same slope.

17) Find \(\lim_{\theta \to 0} \cos(\frac{\pi \theta}{\sin(\theta)}) \). (Recall that \(\lim_{\theta \to 0} \frac{\sin(\theta)}{\theta} = 1 \))

Solution: By limit laws for composites we have that
\(\lim_{\theta \to 0} (\frac{\pi \theta}{\sin(\theta)}) = \cos(\lim_{\theta \to 0}(\frac{\pi \theta}{\sin(\theta)})) = \cos(\pi \cdot \lim_{\theta \to 0}(\frac{\theta}{\sin(\theta)})) \).

Finally, \(\lim_{\theta \to 0}(\frac{\theta}{\sin(\theta)}) = \frac{1}{\lim_{\theta \to 0}(\frac{\sin(\theta)}{\theta})} = \frac{1}{1} = 1 \) and we get that
\(\lim_{\theta \to 0} \cos(\frac{\pi \theta}{\sin(\theta)}) = \cos(\pi) = -1 \).
18) At 2:00 PM sailboat B is 4 km south of sailboat A. After that A starts moving east at 4 km/hr and B starts moving east at 1 km/hr.
Find the rate of change of the distance between the two boats at 3:00 PM.

Solution: In this case \(t = 0 \) is 2:00 PM and we want the result at \(t = 1 \), 3:00 PM.

\[
\begin{array}{c|c|c|c}
 & A & \rightarrow & A \\
\hline
4 & s & \ast & \ast \\
\hline
B & y & \rightarrow & (x - y)
\end{array}
\]

In the upper diagram the letters on the left represent the positions of the two boats at \(t = 0 \), boat A above and boat B below. The two letters on the right represent the positions at a later time. The arrows are the directions that boats travel.
x is distance A traveled and y is the distance B traveled. (x and y vary in time).
We are given that always, \(\frac{dx}{dt} = 4 \) km/hr and \(\frac{dy}{dt} = 1 \) km/hr.
The problem is to find \(\frac{ds}{dt} \) when \(t = 1 \). The distance between them, s, is the hypotenuse of a right triangle with the other sides being 4 and \((x - y)\). So
\[
s^2 = 4^2 + (x - y)^2.
\]
When \(t = 1 \) we have \(x = 4 \), \(y = 1 \) giving us \(s = 5 \).
By implicit differentiation
\[
2s \frac{ds}{dt} = 2(x - y)(\frac{dx}{dt} - \frac{dy}{dt}).
\]
For \(t = 1 \) we have that \(10 \frac{ds}{dt} = 6(4 - 1) \).
So \(\frac{ds}{dt} = \frac{9}{3} \) km/hr at 3:00 PM.

19) When a circular plate of metal is heated in an oven, its radius increases at the rate of 0.01 cm/min. At what rate is the plate's area increasing when the radius is 50 cm?

Solution: We have a circle of radius \(r \) and are given \(\frac{dr}{dt} = 0.01 \). The area \(A = \pi r^2 \),
so we have \(\frac{dA}{dt} = 2\pi r \frac{dr}{dt} \). When \(r = 50 \) cm \(\frac{dA}{dt} = 100 \pi (0.01) = \pi \) cm²/min.

20) The length of a rectangle is decreasing at the rate of 5 cm/sec while the width is increasing at the rate of 3 cm/sec. Find the rate of change of the diagonal when the length is 10 cm and the width is 15 cm. Is it increasing or decreasing?

Solution: If \(x = \) length and \(y = \) width then we are given \(\frac{dx}{dt} = -5 \), \(\frac{dy}{dt} = 3 \),
both represent cm/sec. If s is the diagonal it is the hypotenuse of a right triangle with the other sides x and y. So \(x^2 + y^2 = s^2 \) and by implicit differentiation
\[
2x \frac{dx}{dt} + 2y \frac{dy}{dt} = 2s \frac{ds}{dt}.
\]
If \(x = 10 \) and \(y = 15 \) then \(s = \sqrt{325} = 5\sqrt{13} \).
For those values we get \(-100 + 90 = 10\sqrt{13} \frac{ds}{dt} \) and
\[
\frac{ds}{dt} = -\frac{1}{\sqrt{13}} \text{ cm/sec (e.g. it is decreasing).}
\]