
     
  MATH 4111 HOMEWORK ASSIGNMENT #%
    Due Thursday, October '
    

I.  Problems on Norms for Linear Transformations.  Let  =  or . Suppose� � �
(V,|| ||) and (V ,|| ||   are normed vector spaces over . For each linear� � Ñw w �
transformation T:V  V , let  ||T|| sup {||T( V with ||p � ?Ñll À ? − ?ll � "×Þw w

9:

Notice that, if ||T|| then, for any V, for some with9: " _ß @ − @ � ll@ll? ?
|| =1 and ||T( T( T( ||T||  ||   Hence,?ll @Ñll � llÐll@ll ?ÑÑll � ll@ll ll ?Ñll � @llÞw w w

9:

T is uniformly continuous from (V,|| ||)  into  (V ,|| || , since for and in� � Ñ @ Aw w

V with || ||T|| we have@# All " � Î ß$ %% 9:

||T( T( T(@Ñ# AÑll � ll @# AÑll " Þw w %
 
 1. If T:V V is linear, show that ||T|| T is continuous at 0p " _ Íw

9:

in the sense that, for each >0, we have some >0% $%
s.t.||T( ||T( T(0) when ||   (in view of@Ñll � @Ñ# ll " @ll � ll@# !ll � Þw w % $%
the above remarks, it's only necessary to prove ).É

 2.   For obvious reasons, we say a linear transformation T:V Vp w

is  relative to || || and || || if ||T|| < .  Show that || ||  is abounded Ð � � Ñ _ �w
9: 9:

norm on the vector space (V,V consisting of all bounded linear operatorsU wÑ
from (V,|| ||) into (V� ß ll � ll ÑÞw w

 If V V,|| ||), we write (V) for (V,V). Show that, for SÐ ß ll � ll Ñ � Ð �w w U U
and T in (V), the composition S T is also in (V) andU U�
||S T|| S|| T||  It's customary in linear algebra to write ST for S T.� � ll ll Þ �9: 9: 9:

 3. When (V,|| ||) is complete and T (V), show that� − U

exp(T) T defines a member of (V) whose operator norm is� / �T !
5�!

_
"
5x

5 U

� / Þ @ −ll llT 9: This comes down to checking that, for any V,

A � Ð@Ñ A Ñ8 8 8 !
5�!

8
"
5x

5! T defines a Cauchy sequence ( in the complete metric

space (V, and, with  the limit of this sequence, that. Ñ All�llÑ

|| for each  In checking this, note that T T||A ll � / ll@ll 8Þ ll @ll � ll8
ll ll 55

9:
T 9:

ll@ll 5   !for each by a trivial induction argument..



 4 If T (V,V ) happens to be 1-1 and onto, don't bother to repeatÞ − U w

the easy argument in linear algebra showing that T is linear from V back#" w

to V. Show that T is bounded from (V  into (V  #" w wß ll � ll Ñ ß ll � llÑ Í
inf {||T( || V with ||?Ñ À ? − ?ll � "× % !Þ

V/7+<5= À 0 p  When :  is continuous, the Fundamental Theorem of� �
Calculus tells us that where =  is the differentiationW\ W0 � 0 .Î.B
operator and is the anti-derivative of whose value atÐ 0ÑÐBÑ � 0Ð>Ñ.> 0\ '

!
B

0 is 0.  Obviously,  and  are linear operators.  But  is much betterW \ \
behaved than .  Thus, for any finite  mapsW \+ß
C( { C( ): is zero off the interval (  continuously# +ß +Ñ � 0 − 0 # +ß +Ñ ×�
into BC( ) ={bounded members of C( } since standard easy properties of� �
Riemann integrals yield
ll 0 ll � #+ll0 ll ß\ _ _Þ On the other hand there are no choices of norms
relative to which is continuous; there's no fixed constant W /Þ1Þß -
for which || for every differentiable function This is justW0 ll � -ll0 ll 0 Þ_ _ 
one of many ways in which integral calculus has far superior properties to
those of differential calculus.  In Math 4151, the theories of differential and
integral calculus are extended to functions defined on a smooth manifold
(every such manifold can be realized as a smooth surface in  for some�N

(usually large) N .  The integral calculus theory is easy and best− !
explained using norms.  The differential calculus theory is far from easy,
highly technical, and norms are not useful.  Sadly, general relativity theories
rely mostly on manifold derivatives and are therefore not easy to
comprehend.

Many of you may have seen exponentials of matrices and have heard
a little bit about their usefulness for solving systems of linear differential
equations.  Problem I-3 generalizes matrix exponentials.  This
generalization is useful in several applied areas.

II.  Problems on Matrix Norms.   Again let =  or .  For each � � � !7ß8 − ß
denote by  the -dimensional vector space of all  matrices A�7�8 78 7� 8
with entries A .   Some authors prefer to denote the  entry3ß4 − Ð 3ß 4�
of A by A( in order to emphasize that A can be regarded as a function3ß 4Ñ
from {1,2, , into ).  As usual for each A ,â7× � Ö"ß #ßâß 8× ß −� �7�8



@ È Ð@Ñ � @L A  is a linear transformation from into and,E
8�" 7�"� �

conversely, every linear transformation T:   is of the form L� �8�" 7�"p  
A

 for  a unique A  called the matrix of T.  By showing that ||L− ll�7�8
E 9:

is finite for some choices of norms and using the fact to be proved later that
any two norms on a finite dimensional space are equivalent, it follows
that any linear transformation between two finite dimensional normed linear
spaces is uniformly continuous (no surprise).
 1. Calculate ||L relative to the uniform norms || || on  E 9: _

8�"ll � �
and  .�7�"

 2. Using the taxi-cab norms || || on   and , show that� "
8�" 7�"� �

||L A .E 9: 3ß4
3ß4

ll � l l!
  3. Using the Euclidean norms || || on   and ,� #

8�" 7�"� �

show that ||L A It's customary to callE 9: 3ß4
3ß4

#

"Î#

ll � lllElll � l l Þ! "!
||| ||| the Hilbert-Schmidt norm on although it could be called the� �7�8

Euclidean norm and could be denoted by || ||� Þ#

III.   Problems on Arc length metrics
 1.  Recall that, for ( )  piecewise continuously differentiable> È : >
from [0,1] into  the path  is defined to be�8ß :the arc length along
P � ll: Ð>ll .> P   :Ð"Ñ# :Ð!Ñll: # : #!

" w' and it's simple to show that ||  with
equality Í
:Ð>Ñ � :Ð!Ñ ' 0Ð>ÑÐ:Ð"Ñ# :Ð!ÑÑ 0where is piecewise continuously
differentiable and monotonic increasing from [0,1] onto [0,1] When S is aÞ
5 # .dimensional smooth surface in , the arc length metric on S�8

+<-

is defined by , ) is a piecewise continuously. Ð+ , � 380ÖP À :+<- :

differentiable path with S and Show: > − a> − Ò!ß "Ó :Ð!Ñ � +ß :Ð"Ñ � ,×Þa b
that  S, is a metric spaceÐ . Ñ Þ+<-

 
  The unit sphere S  about 0 in  is defined to be {#Þ + − À8 8'" 8'"� �
ll+ll � "×Þ#

8Show that the arc length metric on S  is equivalent to the
restriction to S S of the Euclidean metric  on Explicitly,8 8 8

#� . Þ�
find the smallest possible numbers  for which-ß -w

 "
- +<- # # +<-w . Ð+ß ,Ñ � . Ð+ß ,Ñ � ll, # +ll � -. Ð+ß ,Ñ

for all points  S+ß , 38 Þ8



L38>= À [2/8 , Â Ö+ß # +× >2/</ 3= + ?83;?/ − Ð!ß Ñ +8. + ?83;?/, ) 1"

?83> @/->9< ? :/<:/8.3-?6+< >9 + =?-2 >2+> , � -9=Ð Ñ+ ' =38Ð Ñ?Þ) )" "

J9< > È :Ð>Ñ -98>38?9?=6C .300/</8>3+,6/
0<97 Ò!ß "Ó 38>9 :Ð!Ñ � +ß :Ð"Ñ � , ß -2/-5 >2+>S with 8

:Ð>Ñ � -9= Ð Ð>ÑÑ + ' =38Ð Ð>Ñ; >Ñ > È Ð>Ñ 3= .300/</8>3+,6/) ) )( where 
0<97 Ò!ß "Ó 38>9 !ß Ñ A3>2 Ð!Ñ � !ß Ð"Ñ � ß +8. > È ;Ð>Ñ 3=[  1 ) ) )"
.300/</8>3+,6/ 0<97 Ò!ß "Ó 38>9 >2/ =:+-/ 90 @/->9<= 38 A23-2�

8'"

2+@/ ?83> 6/81>2 +8. +</ :/<:/8.3-?6+< >9 + A3>2 ;Ð"Ñ � ?ÞH/.?-/

0<97 >23= >2+> P   Ð>Ñ .>   A3>2 /;?+63>C Í Ð>Ñ   ! +8.: !
w

"
w' 1| |) ) )

;Ð>Ñ � ? 09< +66 > − Ò!ß "ÓÞ X23= +<1?7/8> :<9@/= >2+> . Ð+ß ,Ñ � 3=+<- ")
>2/ =9-+66/. 1</+> -3<-6/ .3=>+8-/ 0<97+ >9 ,Þ FC + ><3@3+6 6373>381ww ww

+<1?7/8>ß . Ð+ß # +Ñ � Þ X2/8 0383=2 900 T <9,6/7 # ?=381+<- 1
=>+8.+<. ><31 3./8>3>3/= 9<ß 30 C9? :</0/<ß =>+8.+<. I?-63./+8 :6+8/
1/97/><C </=?6>= -97:+<381 >2/ -29<. 6/81>2 A3>2 >2/ -3<-?6+< +<-
6/81>2 09< >A9 :938>= 98 + -3<-6/ 90 <+.3?= "Þ
 ] 9? -9?6. -+<<C 9?> >2/ +,9@/ 38/;?+63>3/= ?=381 >2/
8# .37/8=398+6 @/<=398 90 =:2/<3-+6 -99<.38+>/= ,?> >23= 3= @/<C
=><9816C 89> </-977/8./. =38-/ >2/ -99<.38+>/= 4?=> 1/> 38 >2/A+C
90 >2/ /+=C -99<.38+>/# 0<// -+6-?6+>398Þ
 
 Give an example of a 2-dimensional smooth surface S where$Þ § �

$

the arc length metric is not equivalent to to the restriction of the Euclidian
metricÞ
L38> À ] 9?< =?<0+-/A366 8//. >9 -97/ @/<C -69=/ >9 096.381ww

,+-5 98 3>=/60 38 9<./< >9 2+@/ :+3<= 90 :938>=A29=/ +<- 6/81>2ww

.3=>+8-/= +</ 6+<1/ ,?>A29=/I?-63./+8 .3=>+8-/= +</ >38CÞ H98 >w

,9>2/< >9 -98-9-> +8 /B:63-3> :+<+7/><3D+>398 90 C9?< =?<0+-/Þ
M8=>/+.ß =/>>6/ 09< + =5/>-2 Ð+= 83-/6C .<+A8 += C9?< +<>3=>3- >+6/8>=
A366 :/<73>Ñ +--97:+83/. ,C + =29<> /B:6+8+>398 29A >2/ =?<0+-/
-9?6. ,/ -98=><?->/. Þ




