DO THE FOLLOWING PROBLEMS:

1. For $N \geq 2$, suppose u is a twice continuously differentiable function on a domain $D \subset \mathbb{R}^N$.

 (i) Use the second derivative test in one-variable calculus to deduce that, if $\nabla^2 u > 0$ at each point in D, u has no maximum value on D while, if $\nabla^2 u < 0$ at each point in D, u has no minimum value on D.

 (ii) If u is harmonic on D and D is a bounded domain, apply (i) to the functions $u_\varepsilon(x) = u(x) + \varepsilon \lvert x \rvert^2$ and $u_{-\varepsilon}(x) = u(x) - \varepsilon \lvert x \rvert^2$ for each $\varepsilon > 0$ to deduce that u is either constant on D or has no max or min values on D.

 (iii) Can you extend the result in (ii) to unbounded domains? [Don't waste a lot of time with this if you have trouble with it]

2. In differential geometry/mathematical physics, when a smooth surface S is the boundary of a simply connected bounded domain $B \subset \mathbb{R}^N$ and n is the outer unit normal field on S (thus, for each x in S, $n(x)$ is perpendicular to the tangent space of S at x and points away from B), it's customary to write $\partial u/\partial n(x)$ for the directional derivative at $x \in S$ in the direction $n(x)$ of a continuously differentiable function u on some domain containing $S \cup B$. Thus, with $\nabla u(x) = \nabla u(x)$ the gradient field of u and \langle , \rangle the Euclidean inner product
(dot product), $\partial u/\partial n(x) = \langle \nabla u(x), n(x) \rangle$. By the divergence theorem (also called Gauss's Theorem), when u is twice continuously differentiable, $d\sigma(x)$ is the increment of $(N-1)$-dimensional surface volume (arc length for $N=2$, area for $N=3$) on S and $d\text{vol}(x)$ is the increment of N-dimensional volume on B, we have

$$\int_S \partial u / \partial n(x) \, d\sigma(x) = \int_B \nabla^2 u(x) \, d\text{vol}(x) \quad (1)$$

Use equation (1) to deduce the following for u and D as in Problem 1:

(i) When $\nabla^2 u \geq 0$ on D, then u is subharmonic in the sense that $u(x_0) \leq$ average value of u on the boundary of any open ball in D centered at x_0;

(ii) When $\nabla^2 u \leq 0$ on D, then u is superharmonic in the sense that $u(x_0) \geq$ average value of u on the boundary of any open ball in D centered at x_0;

(iii) If u is harmonic on D, then u has the mean value property.

3. In class, we'll show that the solution of the Dirichlet problem for (\mathbb{D}, g^\sim) is given by the Poisson integral

$$u^\sim(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} g^\sim(e^{i\phi}) P_r(\theta - \phi) \, d\phi \quad (1)$$

where the Poisson kernel $P_r(\theta)$ for \mathbb{D} is defined to be the real part of $\frac{1 + re^{i\theta}}{1 - re^{i\theta}}$. Now suppose we start with a continuous (or perhaps just integrable) function g on $\partial \mathbb{H} = \mathbb{R} \cup \{\infty\}$ and seek the solution u of the Dirichlet problem for (\mathbb{H}, g). Since the Cayley transform $T(z) = \frac{z-i}{z+i}$
maps \mathbb{H} conformally and 1-1 onto \mathbb{D} and also maps $\partial \mathbb{H}$ homeomorphically onto $\partial \mathbb{D}$, putting $g^\sim = g \circ T^{-1}$, it's immediate that $u = u^\sim \circ T$, where u^\sim solves the Dirichlet problem for (\mathbb{D}, g^\sim). On the other hand, we'll show in class that
\[
u(x + iy) = \int_{\mathbb{R}} g(t)P_y(x-t)
\]
where, as in a previous homework problem, the Poisson kernel $P_y(x)$ for \mathbb{H} is defined to be $\frac{1}{\pi} \left(\frac{y}{x^2 + y^2} \right) = \text{real part of} \ \frac{i}{\pi(x+iy)}$. Check that these two ways of describing u are consistent by transforming (1) into (2) by the substitutions $re^{i\theta} = T(x + iy)$, $e^{i\phi} = T(t)$). [You'll need to "invent" some tricks to compute $d\phi/dt$ and will need to "keep your eyes open" with the algebra associated with the substitutions].

3. In practice, when we want to solve the Dirichlet problem explicitly for some "reasonably nice" simply connected domain D and every $g \in C(\partial D, \mathbb{R})$, we try to construct an explicit 1-1 conformal mapping from D onto \mathbb{D} or from D onto \mathbb{H}, whichever is easier, then apply (1) or (2) and transform back to wind up with an integral of g times a kernel function for D. Carry this out for the following domains:

(i) The sector $\{z \in \mathbb{C} : 0 < \text{Arg}(z) < \alpha\}$ where $\alpha < 2\pi$;
(ii) The vertical strip $\{z \in \mathbb{C} : 0 < \text{Re}(z) < 1\}$;
(iii) $\mathbb{H} \cap \mathbb{D}$ where we limit attention to boundary functions g which satisfy $g(x) = g(-x)$ for $x \in [-1, 1]$;
(iv) $\mathbb{H} \cap \mathbb{D}$ for general boundary functions.
4. The Neumann problem for a bounded domain D having a smooth boundary and a boundary value function h on ∂D is to find a harmonic function u on D for which, in "some reasonable sense", $\partial u / \partial n = h$ on ∂D. Solve the Neumann problem for $D=\mathbb{D}$ by relating it to the Dirichlet problem in a suitable way. Is there an associated kernel function for solutions of the Neumann problem?