ASSIGNMENT #4 (DUE MONDAY, SEPTEMBER 28)

1. #14, p. 55

2. #16, p. 55

3. #18, p. 55

4. Let D be the domain in \mathbb{C} bounded by two parallel lines. Construct a 1-1 conformal map f from D conformally onto the standard unit disc \mathbb{D}.

 Hint. As we'll discuss in class, the Cayley transform $z \mapsto \frac{z-i}{z+i}$ maps the upper half plane $\mathbb{H}^+ = \{z = x + iy : y > 0\}$ conformally onto \mathbb{D}. Construct f as the composition of a suitable Möbius transformation followed by the exponential map followed by the Cayley transform.

5. Consider distinct points z_0 and z_0^* and the 6 domains in \mathbb{C} determined by three distinct circles in $\overline{\mathbb{C}}$ each passing through z_0 and z_0^*. Pick a typical one of these domains and describe a 1-1 conformal map from your chosen domain onto \mathbb{D}. Be sure to indicate how your map depends on the angle between its boundary curves. As in #2, you'll probably want to use a composition of a Möbius transformation, a power function, and the Cayley transform.
6. #19, p.56

7. Let \(g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}(2, \mathbb{C}) \) with \(g \neq \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \), \(\tau = (a + d)/2 \), and \(T(z) = T_g(z) = \frac{az+b}{cz+d} \). Note that since \(\det g = 1 \), \(g \) either has two distinct eigenvalues whose product is 1 or \(g \) is not diagonalizable.

\((i)\) Show that \((z_1, z_2) \in \mathbb{C}^2\) is a non-zero eigenvector for the linear transformation on \(\mathbb{C}^2 \) with matrix \(g \)
\(\iff T(z_1/z_2) = z_1/z_2 \).

\((ii)\) Show that \(g \) is parabolic in the sense that \(g \)
has only one eigenvalue
\(\iff \tau = \pm 1 \)
\(\iff g \) is similar to \(\pm \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \)
\(\iff T \) has only one fixed point \(z_0 \)
and deduce that, for each \(z \in \overline{\mathbb{C}} \), \(\lim_{|k| \to \infty} T^k z = z_0 \).

\((iii)\) Show that \(g \) is hyperbolic in the sense that \(g \)
has two distinct eigenvalues \(\lambda \) and \(1/\lambda \) with \(|\lambda| < 1 \)
\(\iff \tau \notin [-1, 1] \)
\(\iff T \) has two distinct fixed points \(z_0 \) and \(z_0^* \) with
\(\lim_{k \to \infty} T^k z = z_0, \lim_{k \to \infty} T^{-k} z = z_0^* \) for each \(z \in \overline{\mathbb{C}} \backslash \{z_0, z_0^*\} \).

\((iv)\) Show that \(g \) is elliptic in the sense that \(g \) has two distinct eigenvalues each of magnitude 1
\[-1 < \tau < 1 \]
\[\Leftrightarrow \text{T has two distinct fixed points } z_0 \text{ and } z_0^* \text{ for which } \lim_{k \to \infty} T^k z \text{ nor } \lim_{k \to \infty} T^{-k} z \text{ exists for any } z \in \overline{\mathbb{C}} \setminus \{ z_0, z_0^* \}. \]

Also show that for each such \(z \) with \(C_z \) the circle containing \(z \) and having \(z_0 \) and \(z_0^* \) as symmetric points, either the \(T \)-orbit \(\{ T^k z : k \in \mathbb{Z} \} \) of \(z \) is a finite subset of \(C_z \) or a dense subset of \(C_z \).

What are the conditions on the eigenvalues of \(g \) distinguishing the finite orbit case from the dense orbit case?

8. For \(g = \begin{pmatrix} 5/4 & 3/4 \\ 3/4 & 5/4 \end{pmatrix} \), we have \(\tau = 5/4 > 1 \) so \(g \) is hyperbolic. Calculate the attractive fixed point \(z_0 \) for \(g \) and the repelling fixed point \(z_0^* \) for \(T=T_g \). Diagonalize \(g \) in order to get easy formulas for the integer powers of \(T \) and use these to estimate, for \(z \notin \{ z_0, z_0^* \} \) the minimal \(k_0(z) \) for which both \(|T^k z - z_0| \) and \(|T^{-k} z - z_0^*| \) are < \(\frac{1}{1000} \) \(\forall k \geq k_0(z) \).