ASSIGNMENT #2 Due Friday, February 12. Do the following problems:

1. Compute the Green's function \(g(z', z) = g_z(z') \) for the upper half plane \(\mathbb{H} \) by using the formula derived in class for the Green's function on \(\mathbb{D} \) and the Cayley transform \(w = \frac{z-i}{z+i} \) from \(\mathbb{H} \) onto \(\mathbb{D} \). Then check that, with \(P_y(x) = \frac{y}{\pi(x^2+y^2)} \) the Poisson kernel on \(\mathbb{H} \) (as discussed last semester),

\[
\frac{1}{2\pi} \left(\frac{\partial}{\partial s} \right)_{s=0} g(t+is, x+iy) = P_y(x-t).
\]

Note that the derivative on the left hand side is the negative of the outer normal derivative of \(g_{x+iy} \) at the boundary point \(t \in \mathbb{R} \) for \(\mathbb{H} \).

2. As usual, when \(0 < R_1 < R_2 \), \(A(z_0, R_1, R_2) \) is the annulus \(\{ z \in \mathbb{C} : R_1 < |z-z_0| < R_2 \} \) and it's obvious that this annulus is conformally equivalent to \(A(0, R_1/R_2, 1) \) via the conformal map \(z \mapsto (z-z_0)/R_2 \). It's then convenient to restrict attention to the family of standard annuli \(A(r) = A(0, r, 1), 0 < r < 1. \)

(i) Use a version of Schwarz's Lemma to deduce that \(A(r_1) \) and \(A(r_2) \) are conformally equivalent \(\iff r_1 = r_2 \). It follows immediately that two non-standard annuli \(A(z_0, R_1, R_2) \) and \(A(z_0', R_1', R_2') \) are conformally equivalent \(\iff R_1 / R_2 = R_1' / R_2' \).

(ii) For \(r \in (0, 1) \), compute the group of all 1-1 conformal maps from \(A(r) \) onto itself. \(Hint: \) Note that \(z \mapsto r/z \) is a member of this group.
3. The Koebe 1/4 function is defined by \(k(z) = \frac{z}{(1+z)^2} \).

\((i)\) Use the obvious fact that \(k(z) = k(1/z) \) for \(z \neq 0 \) to deduce that the restrictions of \(k \) to \(\mathbb{D} \) and to \(\mathbb{C} \setminus \mathbb{D} \) are 1-1 conformal maps onto a common simply connected domain \(\mathbb{D} \).

\((ii)\) Show that \(\mathbb{D} \) contains \(\overline{D(0,1/4 \setminus \{1/4\})} \). In particular, this means that \(1/4 \) is the radius of the largest open disk about 0 contained in \(k(\mathbb{D}) \).

\((iii)\) Show that \(\mathbb{D} \) is the slit domain \(\mathbb{C} \setminus [1/4, \infty) \).

Hence, for the rotated Koebe function \(k_{\theta}(z) \) (see the univalent function notes), \(k_{\theta}(\mathbb{D}) = \mathbb{C} \setminus e^{-i\theta}[1/4, \infty) \) is also a slit domain.

Read the univalent function notes before embarking on the problems below.

4. Show that nothing like the Viertel Satz holds for non-univalent functions by consider the holomorphic functions \(f_\varepsilon(z) = \varepsilon(e^{z/\varepsilon} - 1), \varepsilon > 0 \), noting that \(f_\varepsilon(0) = 0 \) and \(f_\varepsilon'(0) = 1 \).

5. Prove Bieberbach's Area Theorem in the following way.

For \(h \in \Sigma \) with the expansion (2), the fact that \(h(0) = \infty \) and \(h \) is univalent means that \(h \) maps \(D(0,r) \) into an unbounded domain whose boundary is the simple closed \(\Gamma(r) = h(C(0,r)) \)

and \(\theta \mapsto h(re^{i\theta}) \) defines a clockwise orientation of \(\Gamma(r) \).

By Green's Theorem, we can calculate the area \(A(r) \) of the interior of \(\Gamma(r) \) by describing each \(w \) in \(\mathbb{C} \) by \(w = u + iv \) and integrating \(\alpha = \frac{1}{2}(vdu - udv) \) over \(\Gamma(r) \). But the complex 1-form

\[\frac{-w}{2i} \frac{dw}{dz} \]

is equal to \(\alpha + i\beta \) where \(\beta = \frac{1}{2}(udu + vdv) \) is exact.

This means that we can compute \(A(r) \) as

\[\frac{1}{2i} \int_{0}^{2\pi} h(re^{i\theta}) h'(re^{i\theta}) d(re^{i\theta}). \]

Carry out this integral and then take the limit as \(r \to 1 \) to prove the Area Theorem.
6. (i) First check the details of the passage from \(f \in \mathcal{S} \) to \(g \) satisfying (3). Why does the power series for \(\psi \) converge on \(\mathbb{D} \)? Why is \(g \in \mathcal{S} \)?

(ii) Check that, for \(f \) described by (1) and \(h = 1/g \) described by (2), \(c_0 = 0, \ |c_1| = \frac{|a_2|}{2} \) and deduce from the area theorem that \(|a_2| = 2 \iff h(z) = 1/z + e^{2i\theta} z \) for some \(\theta \in \mathbb{R} \) and go on to deduce that this holds \(\iff f = k_0 \).

7. Prove the Viertel Satz using (6) and checking that when \(f \in \mathcal{S} \) and \(w \notin f(\mathbb{D}) \), \(f^\sim(z) = w f(z)/(w - f(z)) \) is also in \(\mathcal{S} \) with the relationship between \(z^2 \) coefficients for \(f \) and \(f^\sim \) being as described in the Notes.