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1. Formulation of Results.

Throughout this paper M will denote a C® compact manifold without boundary with

a Riemannian metric o of negative sectional curvature.

Recently Masahiko Kanai [4] proved that if the stable horospheric foliation W2 on the
unit tangent bundle V = SM is C™ and the curvature K satisfies the following pinching

condition
9/4 < K<-1 (1)

then the geodesic flow ¢, for the metric o is C° isomorphic to the geodesic flow for a metric
of constant negative curvature.
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In the present note we improve Kanai’s result by removing the pinching condition in
dimension three and making it sharp in dimension four. More precisely, we prove the following

theorems.

Theorem 1. If dim M = 3 and the stable horospheric foliation W* on the unit tangent bundle
of M is C® then the geodesic flow for the metric o is C™ isomorphic to the geodesic flow for a

metric of constant negative curvature.

Theorem 2. If M is four-dimensional, the stable horospheric foliation is C% and the sectional
curvature is restricted to the interval -4 < K < -1 then its geodesic flow is C™ isomorphic to

the geodesic flow for a metric of constant negative curvature.

Theorem 1 was proved by the second author and Theorem 2 by the first one.

Corollary. Under the assumptions of either Theorem 1 or Theorem 2 the topological entropy
of the geodesic flow for the metric ¢ is equal to the metric entropy with respect to Liouville

measure.

We observe that the pinching assumption on K in Theorem 2 is optimal since the
geodesic flow on the complex hyperbolic plane has smooth horospheric foliations and

minimum/Kma.ximum = 4 holds.

The results of this paper were obtained when both authors were visiting the
Sonderforschungsbereich “Geometrie und Analysis” at the Mathematics Institute of the
University of Gottingen, West Germany. We feel a pleasant obligation to thank the
Sonderforschungsbereich for its financial support, the Institute fiir Mathematische Stochastik

of the University of Gottingen for providing working facilities and secretarial help, and
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especially the organizers of the SFB program in geodesic flows, Manfred Denker and Paddy

Patterson for creating a very stimulating working environment.

2. Introduction.

In what follows we summarize the basic constructions used in the paper. The reader

may wish to consult [4] for further details.

Let TV = E° + E + E7T be the hyperbolic (Anosov) splitting for the geodesic flow ¢,
where E° is the one-dimensional subbundle generated by the flow direction and E’, Et are
correspondingly contracting and expanding sub-bundles, i.e. the distributions tangent to the
stable horospheric foliation W* and the unstable horospheric foliation WY. In general, the
bundles E+ and E™ are not very smooth. It is believed that they may even not be C1,
although no examples are known; a pinching condition for the curvature -k*> < K < -1
guarantees that EY and E- are of class C'%. Both bundles have the same smoothness
because the differential of the “flip” map J: V — V, J(v)=-—v interchanges them. Our
main assumption that forces rigidity is that one of the bundles (and hence both of them) is

Cc*™.

~

Let M be the universal cover of M provided with the lift & of the Riemannian
metric . The fundamental group T of M acts on M as a group of isometries. Let B be the
sphere at infinity (ideal boundary) for M. Every two distinct points b-, bt € B can be
connected by a unique geodesic on M so that the space P of geodesics on M is naturally
identified with the space B x B minus its diagonal. The group I" acts on P in a natural way.
This action has dense orbits and the fixed points of its elements, which correspond to closed

geodesics on M, are dense in B. The “flip” map is also projected naturally to the space P. We

will use the same notation J for it. Thus if (by, by) € P, J(by, by) = (bg, b;).

On the unit tangent bundle V there is a natural g,-invariant 1-form « (the contact
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form) whose kernel coincides with E++ E". The restriction of da to that kernel is a non-
degenetate ¢,-invariant 2-form. Its lift to M produces a [-invariant 2-form on the unit
tangent bundle V of M which, due to its invariance with respect to the geodesic flow, can be
projected to a T[-invariant symplectic form Q on P. Let us denote the projections of the
stable and unstable bundles to P by Ft and F", and the projection of the horospheric
foliations W% and WY there by ¥° and ¥Y. The last two foliations are transversal C%
Lagrangian foliations of the symplectic manifold (P, Q). Kanai calls the quadruple

(P, Q, ¥°, FY) a bipolarized symplectic manifold.

Following [4] we can define in (P, Q, ¥°, ") an affine connection V characterized by
the following properties: (i) V is a torsion-free affine connection, (ii) Q is parallel, that is
VQ = 0, and (iii) if f is a smooth function defined locally on P, which is constant on each leaf

of F3 (resp. F1), then Vfdf = 0 for any £ € F~ (resp. F+). Denote by R the curvature tensor

of V. Define

R(&7, €9» €3, &4) = QUR(Ey, €9)€3, &y)

w(él’ E?’ E3’ 54’ 65) = (V€1 ﬁ.) (627 63, 64? 65)9 El € TP. (2)

We have VR = 0 iff w = 0. Also ¥° (resp. F") is flat, that is R(£;, €9) = 0 whenever &, and

§o belong to F- (resp. F+).

Note that the hypothesis on smoothness of F¥is required for the above tensor fields to
be well defined. It actually requires only a certain finite degree of smoothness but we will not

be concerned with this matter here.

Kanai uses condition (1) and a rather simple dynamical trick to prove that the tensor

w, hence VR, vanishes ([4] Proposition 2.4).

In Section 3 of his paper Kanai classifies symmetric bipolarized symplectic manifolds.
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Based on that classification he deduces in Section 4 the rigidity of the geodesic flow. Thus, in
order to prove Theorems 1 and 2 it is enough to establish that under the weaker pinching
assumptions of these theorems the form w still vanishes and then refer to ([4], Sections 3 and
4). We would like to point out that we have to use various dynamical properties of the

geodesic flow in a more elaborate way than does Kanai in the proof of his Proposition 2.4.

Proposition. Under the hypothesis of either Theorem 1 or Theorem 2 we have w = 0.

We state below a number of formal properties of the tensor w which will be used later

on. For simplicity we write (1 --- 5) instead of w(ﬁl, ey 65).

2.1)  (12345) = -(13245)

2.2)  (12345) = (12354)

2.3)  (12345) + (13425) + (14235) = 0

2.4)  (12345) — (14523) = (15342) — (14253)

2.5)  (12345) = (21345) + (32145)

2.6) w({l, vees 65) vanishes whenever at least one of the pairs (52, 53) and (&4, {5) belongs
to a same subbundle F~ or FT.

2.7) wis invariant under T.

2.8) ] is an affine map with respect to V; J*Q = -Q, J*w = -w.

We will sketch the proofs for some of the properties in order to give the flavor of the
arguments involved. A basic fact to have in mind is that V preserves the distributions FT
and F-, that is, if £ is a vector field tangent to F+ (resp. F-) and ¢! an arbitrary vector field,

then Vf'E is a field tangent to FT (resp. F).



Consider, for example, property (2.2). The connection V can be extended in the usual
fashion to a derivation of the mixed tensor algebra of TP. It follows that, for vector fields ¢
and 7, R({, n) is also a derivation with the further property that it annihilates scalar

functions. Since Q is parallel, we have for fields €15 §o that

0= R(£9 77) Q(sl’ 52) = Q(R(f, ’7)61’ 62) + 9(513 R(&? 77)62)

The antisymmetry of Q yields Q(R(¢, n)fl, {2) = Q(R(¢, n)£2, fl). This is a property of R

similar to (2.2). If we now use the fact that V preserves the foliations and that, for a (0, k)-

tensor T and vector fields &;, (VT)(§y, -+ &) = €T(§p, &) =X T(€y, - Vi - &),
1

we obtain (2.2) from the previously derived property of R.

Properties (2.1), (2.3), and (2.4) are derived in a similar way. Notice that (2.4) is the
symplectic counterpart of the symmetry (1234) = (3412) of the curvature tensor associated to
a Riemannian connection. The proof of property (2.5) is certainly more demanding but alsé
straightforward. Property (2.6) follows from the fact that the leaves of ! and ¥° are flat.

The other properties are also easily derived. 8]

Using the flip mapping J and properties 2.1 and 2.2 we see that, in order to prove the
Proposition it suffices to establish that w(&i*-, {’2, fg-, {;, f;-) = 0, where £i+ (resp. 5{)
denotes an arbitrary vector in F+ (resp. F-). Notice that the properties 2.1-2.6 allow us to

permute any two entries of w(£-1+, 5'2, {;, f;, E;-) of same sign.

3. Resonances at periodic points.

Assume w # 0 and consider the set A’ of points of P where w does not vanish. A’ is

an open, I'-invariant, J-invariant set. Since the action of ' on P is topologically transitive, Al
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must be dense in P. Consider the set A of points of A’ which are images of periodic points for
the geodesic flow on SM. For each such point there exists an element v € T that fixes it.

Note that this set of points is J-invariant and dense.

For v € T let us denote the action of y on P by A,. For each point p € A there exists
an element ¥ € I such that Ayp = p. Let us fix p € A. In what follows we suppress the
dependence on p in our notation. Let us denote the differential of the map A, at p by
p: TpP — TpP. This map is symplectic, i.e. it preserves the 2-form Q. Since its eigenvalues
are different from one in absolute value they split into pairs of mutually inverse numbers. We

: -1 -1
denote those eigenvalues Al, N An-l’ 17 ’\n-l so that

1< gl gl € € gy

If '\i is real we will denote its root space by F1+ and the root space of /\il by Fi. If ’\i
is complex we will denote by Fi+ (corr. Fi) the real part of the sum of the root spaces
corresponding to A; and ;\-i (corr. to Ail and Xil). In all cases we will call the elements of the

spaces Fi:h root vectors associated to /\i:tl.

Notice that 1/4 pinching of the sectional curvature of M implies that |A| < ]/\j/\k|
Vigk
Lemma 1. Suppose p € A and let fl, 53, 55 € F+, €95 54 € F~ be such that u({l, . £5) #*
0. For n = 4, assume further that || < I)\jz\kl for any i, j, k. Then at least one of the

following relations must take place:



n=3 § §2 €3 €4 {5 belong to
1) N3 =131, 1M1 < gl FFor, Ff Fy FT
2) =1 1M < gl Ff o FF R, FT o
Ff r, Ff Py Ff
n=4
1) PIAZ =1, M) < gl < Agl A T S S
2) IAZAZI =1, 1M < gl < gl Ff Fg Ff Py Fy
3) N3t =1, 1M1 < gl < gl FFoor, FT Py FY
8 P32 =1, 1Ml < gl FFor, T Ry FY
5 AR =1, 1M < gl FYory FT Py Ff
6)  IMSAZI =1, 1Ml < gl Ff Fy Fy F3 Fj
Proof. Recall that Aﬁw =w. I Ei, i=1,...,5 are root vectors of p associated to eigenvalues

;s then

wp(fly ceey 55) = nlivmoo (A’—}*w)p (51, ey 55) = nlirmoo (Pnfl, ) Pnfs)

olim (T #)® wp(éys - €5):

Hence |]'[315=1 pil = 1, unless wp(§, - 55) = 0. In particular if £y, ..., {5 are as stated in the
lemma, one has IAelz\esAe5| = |/\22/\e4|. We observe in passing that for n = 3, A; and A, are
distinct and real. The relations given above then follow from the last equation by explicitly
enumerating the possibilities when n is equal to 3 or 4. For the right hand side of the table,
which is presented there for the sake of convenience, one should bear in mind that we can

permute the arguments of w that are labeled with a same sign. a



Remark. Denote by P; the set of points of A for which relation (i) holds (if n = 3, i € {1, 2};
forn = 4,i € {1, ..., 6}). For n = 3 we clearly have P; N P, = 0, otherwise A,(p) and
A2(p) would be equal to 1 for some p, which is impossible. When n = 4, various relations may
occur simultaneously. For example, a point p may belong to P, N P, if |/\1|35 = |A2|28 =
|A3|2°. On the other hand, the simultaneous occurrence of, say relations (2) and (4) would
imply |A1|2 = I/\3|, which violates the pinching assumption |}, < l’\j)‘kl Vi, j, k. The
diagram below shows which relations may occur simultaneously by connecting the

corresponding numbers, i.e., (i)-(j) means P, N Pj # 0.

(4) — (1) — (3) — (6)
(2)
Notice that Py N Py (resp. Pg N P6) may be nonempty only if the eigenvalue Ag (resp. Aq)

has multiplicity 2, in which case relations (5) and (4) (resp. (5) and (6)) coincide; Py N P, = 0

fori € {1, 2, 3}.

o

Proof of the Proposition for 3-dimensional manifolds.

emma 2. In the 3-dimensional case the splitting of Fg:, p € A, into the eigenspaces of

Ale(p) and /\2:t1(p) extends to a smooth splitting of F¥ on an open and dense subset of P.

Proof. The closures of the sets P;, i = 1, 2, which we denote by f’—i, are I'-invariant and ﬁi U

P_2 = P since Pl U P2 = A is a dense subset of P. Since orbits of I are dense either P1 or P2

is itself a dense subset of P.

1) Assume that P, is dense in P and consider a point p of P;. Choose vectors f.li',

5;, E;— € Fg and §,, £, € Fp for which wp(ET, €9» f;, §4 £5+) # 0. Define smooth
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extensions Eli of Eii to an open neighborhood of p in such a way that th € FE. By

considering a smaller neighborhood Up if necessary, we may assume that wq(gr, E;) #* 0
for every q € Up. Define L(q) = {n € F(T : wq(n, 2_2, Eg_, E;, Eg-) = 0}. Then q — L(q),

q € Up, defines a smooth one-dimensional distribution which agrees with F;- on Py N Up (see

the right-hand side of the table in Lemma 1). Since p € P; was arbitrary, we have thus

defined an extension of Fg‘ to a smooth field of lines on an open and dense subset U of P.

Consider now L/(q) = {n € Fq : Qn, L(q)) = 0}, q € U, the skew-orthogonal
complement of L(q) with respect to the symplectic form. Since € is non-degenerate, q —
L'(q) defines a smooth field of lines which, by the I-invariance of Q, must coincide with F; at
the points of P;. We have thus extended F'1 to a smooth distribution on that same open and
dense subset of P. By applying the derivative J, of the flip mapping to the distributions we
have just constructed, we obtain extensions of the remaining F'2 and F-1+- on the open and

dense subset U N JU.

2) Now assume that Py is dense in P. For q € P define L(q) = {n € Fq : wq(F+, 7,
Ft g, FT) = 0} = {n € Fgq : w(€y, 1 Eg m, €3) = 0, V&, &g, £5 € Fq }. Notice that L(p)
always contains F'1 for points p € P2. In order to see what else is contained in L(p) consider 7
= a{l + b£_2 € L(p) where, as before, £i:t denotes a nonzero vector in Fli We then have 0
= T, 0, B on BN = 206, &, FF, 6, FT) + b2Et, &, FT, 6, F).
According to the table in Lemma 1 we have either (i) w(F-l*-, F'l, F+, F'2, F-l*.) # 0 and w(Fii-,
Fy, FY, Fy, FY) = 0, or (ii) w(FY, Fy, F3, Fy, FT) # 0 and w(F{, F}, F5, Fy, F{) = 0.

Case (i) implies ab = 0 and case (ii), b = 0. Therefore L(p) is either F] U Fjor Fi.

Since L(q) is the zero set of a system of quadratic equations which depends smoothly
on q € P, there will be an open and dense subset U of P where each component of L(q) varies
smoothly in the space of irreducible subvarieties of L-(q) of corresponding degree, while L(q)

coincides with either F; U FoorFiatqeUN Py. In any case we are able to extend F;(p),
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P € P2, to a smooth line field on an open and dense subset of P. Using Q and J as before we

obtain extensions for the other directions. This concludes the proof of Lemma 2. 8]

Denote by ?Fis (resp. ‘EF;I), i = 1, 2, the integral foliations associated to the one-
dimensional distributions Fi (resp. F1+) obtained in Lemma 2, which are T-invariant and
smooth, and are defined on an open dense subset Q C P. Q can be chosen to be I' and J-

invariant. Recall that Ft = Fit + Fét and F+ = TFY, F = TIS.
Lemma 3. The foliations ¥° and ‘.F‘ll form an integrable pair.

Proof. Denote by %5, ‘.Fi“p, etc., the local leaves of the corresponding foliations that contain

the point p. Let p € Q, q € ¥, p € ‘ffg. Then the local leaves ‘.Fg and ‘:'fs, have a unique
P

intersection point which we will denote by Hp,qp'. The map Hp q : ‘.FB — ‘:Tg is called a

canonical or holonomy map. For the integrability of ¥% and ‘.Flll at the point p it is enough to

show that
U _ pu
DHp q Fl,p = Fl,q' (3)

Since integrability is a closed condition it is enough to establish it on the dense subset Q N A
of P. Recall that A = P; U P, (see Remark in section 3). For 7 € T, recall that A, is the
action of ¥ on P. By the definition of the set A, each p € Q N A is the unique fixed point of a

map A, for some 7.

+

Since F;- corresponds to the direction of “fast” expansion while F; is the “slowly”

expanding direction, for every vector § € Fg\Fii-p the direction of the vectors AI.}*f
b

+

2’p asn — oo.

exponentially converges to F

On the other hand, canonical maps are y-invariant which implies that
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+ _ n +
DHp,A%qFl,P = DAY DHpq Fl,p (4)
As n — oo, Al-}q — p so that the left-hand side of (4) converges to F-l*-p; hence the same is
true for the right-hand side. In particular, the growth rate of DA";E for § € DHp q F_l*-p as

+

n — oo is the same as in F-1+-p and hence slower than in Fg-x' But since the spaces DAI.; Fq
converge exponentially to Fg- as n — oo the direction of every vector from F(T\DHp,q F_1+-p
will converge to F¥_. Thus if FT_ % DHy q FY_ the distribution FJ which is Ay-invariant

& 2,p’ l,q P "1,p 2 U "

is discontinuous at p, which is not the case. This proves (3). o

Lemma 4. There exists an open dense subset of P such that near each of its points one can
define a smooth coordinate system (xl, X9, ¥1» y2) whose coordinate lines coincide with the
integral curves of the foliation ‘.F‘ll, ‘.F‘21, g3, ‘Ig respectively, and such that Q@ = dx; A dy; +

dx2 A dy2.

Proof. We will prove that such a coordinate system can be defined near each point of A N Q.

Let v be any element of . According to Lemma 3 there is a 3-dimensional foliation g
tangent to F~ + Fil. and one can consider the factor-map induced by A on the space of leaves
of that foliation. That factor-map is a one-dimensional hyperbolic expansion, and
consequently, it can be linearized by a C®® choice of coordinates. Since the distribution F;' is

transversal to § and A,-invariant, the linearization yields a vector field f; contained in F2+

such that

Ags &5 = 2¢ (5)

for a constant A > 1. Now we can use the invariance of the 2-form Q to normalize F‘2, namely

we choose {’2 contained in Fy such that
12



el ) =1 (6)
Using the A-invariance of 2 and (5) one has

A €3 = X1 g

Now comes the critical point in the argument. According to Lemma 1, if x € A, then

at least one of the following conditions takes place:
a') wx(Fi‘-? F-2, FTa F_2’ Fi‘-) $ 0
b) wx (FY, Fy, FY, Fo, FY) #0

C) Wx (F-li-’ F-29 F;—, F-Q, Fi*—) $ 0

Case (a) occurs at points of P, and cases (b) and (c) at points of P,. Denote by Py and P¢
the sets of points of A at which relations (b) and (c), respectively, hold. As in the beginning
of the proof of Lemma 2, we conclude that either Pl’ Pb’ or P, must be a dense subset of P.

We will show that each case leads to a contradiction.

a) Suppose P, is dense in P. Define vector fields {i'- and 5'1 on Q, tangent to 9111

respectively, so that

w(et, &, . 6, 6 =1 )
GEEE! (8)

Using the invariance of the tensors with respect to A7 one immediately obtains A‘Y* E_f =

-2/3

223 E-li-, Ay f’l = A 5'1. Thus, all vector fields are transformed by A, with constant

coefficients. This allows to calculate their brackets, e.g.,
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Aaled, € = [Ays 6 Ayu 61 = X3S, 1] = (65, 1 = 0

since /\1/3 is different from the four eigenvalues A, /\'1, /\2/3, /\-2/3. In fact, it can be shown in
an analogous way that the other brackets also vanish, so that the vector fields defined above
are the coordinate fields for the coordinate system we were looking for. Furthermore, one

easily checks that for every pair of our vector fields except for ET, f'l and f;- y 5'2 the form Q

vanishes. This together with (6) and (8) concludes the proof in this first case.

b) and ¢) The proofs for these two cases go along similar lines as in (a), after doing
the obvious changes in relation (7). There are important differences, however. In this case we
obtain vector fields §i+, 5; for i = 1 and 2, satisfying

t1/2
A'y*fit:/\ /

€, A €5 = 2L 67
After computing the various bracket relations as was done in the first case, one observes that

all brackets vanish except, possibly, for

e, &1 = et 9)
€5, €71 = '€ (10)

An application of the Jacobi identify and relations (9) and (10) yields cc'f‘l = [£'2, [5'21- R é’l]] =
-[(€95 fg-], 5'1] - [5-2*', [5'1, (2]] = 0, so that cc/ = 0. Observe now that J interchanges the
foliations “J;l and ‘Efis so that J, £i+ = fifi, & = gi§i+ for functions f;, g; on the J-invariant
set Q. Notice that 'Si+ = (32)*€i+ = figifi-,r so that f; and g; never vanish. By applying J, to
the relations (9) and (10) one obtains d = (f g1/f1) ¢, hence c = 0 iff ¢/ = 0. Therefore ¢ =

¢/ = 0 and we arrive at the same conclusion as in case (a). O

End of the proof of Proposition for n = 3. In the coordinate system defined in Lemma 4, we
14



have

FS = {x; = const., x5 = const.}, Fu = {y; = const., Yo = const.},
and Q = dxl A dy1 + dx2 A dy2. A simple calculation shows that, in this case V is flat on
the open and dense set Q and hence on the whole P. Therefore w = 0, contradicting the

original assumption. |

5. Proof of the proposition for 4-dimensional manifolds.

We continue to use the notations of Section 4 but naturally a.séume that dim M = 4.
Recall that P; denotes the set of points in A for which relation (i) in the table of Lemma 1
holds, i € {1, 2, 3, 4, 5, 6}. Since A is dense in P we must have P = LIJ ITl Also each of P_l is
[-invariant, hence at least one of them must coincide with P, say P = Fx Our plan is to
show via a case-by-case analysis that the last equality leads to a contradiction for each i. For

that end we will need the following lemma.

Lemma 5. Assume that w(£-1+', 6'2, f;, £;, E;) # 0 at a point p € A, where fi:k are root

vectors of p (as above) associated to the eigenvalues /\gfl. Extend 5?: to smooth vector fields
i

Eli near p, tangent to the same foliations (F" or ¥°) as 5;*:. Then, at p we must have

~T A ~

Proof. We have “’(fl, cen 55) = (Vflﬁ') (52, ceo 55) = flﬁ'(gza Y 25) - ﬁ(vfl ?2, 53,
64, 65) - = R(Ez, 63, 64, V£1 ?5) Consider the term ﬁ.(Vel ?2, 53, 54, 65), and assume
it is not zero. Decompose (Vf1 ?2)p € Fp into vectors associated to the eigenvalues /\'e}

There will be at least one component, say 75, associated to A'l, for which ﬁ.(r], 53, 1] 4 € 5) # 0.
15



Since R is I-invariant, we must have |’\'\24| = |/\e3Aes|. Combining it with "\22)‘24| =
A, A, A, | we get |A, | = |AX, |. But this is impossible, due to the pinchi f K. Theref
| e e, es| get | 22‘ | ell mpossi ue to the pinching o erefore

R(Vgl ’22’ 53, 54, 55) = 0. The other terms of this type vanish for the same reason. 8]

We now proceed with an analysis similar to that of the proof of Lemma 2. The reader
may wish to refer to the table of Lemma 1 and the diagram at the end of Section 3 as we go

on.

1) Suppose P = -P_i, which corresponds to the relation I/\% Ay /\332| =1, |A¢] < Aol <

|/\3|. One should keep in mind that P; N Pg and P, N P, are not necessarily empty. Define
L(p) = {n € Fg. : wp(ms 13» n;—, n3s r):{) = 0, for arbitrary vectors ni:t € Fg} ={n € Fg- :
wp(m F, FT,F, FT) = 0}, p € P. 1t € = agf +beg + céF € L(p') for p’ € Py and £ a
A;-root vector, then 0 = w(§, F, F+, F, F+) = aw(fi*-, F, F+, F, F+) + bw(ﬁg, F, F+,
F, F+), since w vanishes when its first argument is the fastest expanding vector. By
hypothesis, for p/ € P; we have w(€], €, €7, €3, €3) # 0 while w(¢], €3, €7, &, €3) = 0,
even if relations 3) or 4) happen to occur at p' (see the table of relations). Hence a = 0.
Now, w(ed, €, &1, &5, €5 = wief, &, 6 65 €) # 0 and w(e], &, €7, 63, €)= 0
(relations 1) and 5) cannot occur simultaneously at a same point), so b = 0 as well. On the

other hand, £3+ is always in L(p’). Therefore L(p') coincides with the fast expanding direction

fg' at points p' in P,.

The relation wp(x, F, F+, F, F+) = 0 defines a system of homogeneous algebraic
equations smoothly parametrized by p € P, with the property that its zero set, L(p), coincides
with the A3-direction at points in the dense set P;. Hence p — L(p) defines a smooth line
field on an open and dense subset of P containing Pl' In this way we have extended the fast
expanding direction f:.,r- to a smooth vector field, E;, on an open and dense subset A C P such
that P, C A. By considering A N JA if necessary we may assume that A is J-invariant.

Thus Eé : = J*E; defines an extension of Eé to a smooth vector field on A.
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Consider now L'(p) = {5 € F;T 2 Q(n, Eé(p)) = 0} for p € A, the skew-orthogonal
complement of EE; with respect to the symplectic form. L'(p) defines a smooth plane field on
A which extends the slow expanding plane span {6_1*-, 5_2*_} Denote by 2‘;, E; vector fields
tangent to L'(p) which extend 5-1{-, f;- respectively (they are not necessarily eigenvectors).
By the I-invariance of R we must have that R(EE;, Z-li-’ Eé, E;-) vanishes identically on A.

According to the lemma, w(fi'-, 5'3, £'1+, {é, 5'2{') = 0 on P,. But this is a contradiction.

A similar analysis has to be carried out for the remaining cases 2), 3), 4), 5), and 6).

Below we indicate the necessary changes in the argument.
2) Similar to 1)
3) Consider L(p) = {n € Fp : w(Fp, n, Fj, Fp, Fp) = 0}

4) Consider L(p) = {n € Fg' : w(n, Fp, n, Fp, n) = 0}, a system of cubic
homogeneous equations, and show that for p' €EP 4 L(p' ) coincides with the plane generated

by the A2, ,\3-eigenspaces. Then proceed as in case 1).

6) Consider L(p) = {n € Fp : w(F+, 7, F+, 7, F+) = 0}, a system of quadratic
equations, and show that for p’ € Ps, L(p') coincides with the A1s Ag-plane. Then proceed as

before.

5) We may use a somewhat different argument, here. Assume P = P_5, which
corresponds to the relation IA?' = |A§| Note that no other relation may occur
simultaneously. Since dim Ft = 3, either Fi’- or F;’ is one-dimensional.

a) Suppose F-li_ is one-dimensional. Let El’ 63, 65 € Fi*-, 52, £4 € Fz.) be vectors at

p' € P5 such that w(sl, . 85) # 0. Extend fi to a smooth vector field Ei tangent to the

same bundle as fi(F+ or F'). Consider p — L(p) = ker w(-, 22, 23, 34, 35) + for p close
F

enough to p’ so that wp # 0. This function defines a smooth filed of planes containing F;

+

and Fg at points of Pg. From here on, proceed as in the previous cases.
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b) Suppose Fg- is one-dimensional. Use a similar argument, but now starting with

L(p) = ker w(él) ) 23’ 549 25) F_' a

6. Concluding Remarks.

In the two-dimensional case a similar rigidity result was proved by E. Ghys [2].
Kanai’s method also works in that case without any pinching assumption and produces a
somewhat more natural proof. In fact, a much weaker smoothness assumption forces rigidity
in dimension two [3]. Moreover, in the same paper S. Hurder and the second author show that
higher than usual smoothness of the stable foliation (and hence rigidity) is equivalent to
vanishing of a certain l-cocycle over the geodesic flow, which is called Anosov cocycle to
emphasize the fact that in Chapter 24 of his fundamental work [1] Anosov discovered
obstructions to smoothness which turned out to be values of that cocycle. It would be very
interesting to understand the nature of critical smoothness in higher-dimensional situation. It
looks that at least partially the situation can be described in cocycle terms. Unlike dimension
two, however, the “critical smoothness” should depend on relations betwen the Lyapunov

exponents at periodic points.

In the two-dimensional case rigidity of the geodesic flow implies that the metric itself
has constant curvature. This follows from entropy rigidity [5] or rigidity of Godbillon-Vey

class [3]. Since none of the two facts is known in higher dimension the question remains open.

Our methods allow to shed some light on the situation in dimension greater than four.

Results for that case will appear in a separate paper.
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