Math 5031 - Homework 6

Due 10/14/05

1. Define the generalized quaternion group Q_m by the presentation

$$Q_m = \langle a, b \mid a^{2m} = 1, b^2 = a^m, ab = ba^{-1} \rangle$$

for $m \geq 1$. Show that Q_m has order $4m$. Find a concrete group with order $4m$ having the same relations as Q_m. (Hint: consider $e^{i\pi/m}$ and j inside the ring of quaternions.)

2. Use generators $a = (12), b = (23), \text{ and } c = (34)$ for S_4 and show that S_4 has the presentation

$$\langle a, b, c \mid a^2 = b^2 = c^2 = (ab)^3 = (ac)^2 = (bc)^3 = 1 \rangle.$$

3. Let R be the set of functions $f : \mathbb{N} \to K$, where K is a commutative ring with 1. Define the sum in R to be the ordinary addition of functions, and define the convolution product by the formula

$$(f \ast g)(m) = \sum_{xy = m} f(x)g(y),$$

where the sum is taken over all pairs (x, y) of positive integers such that $xy = m$.

(a) Show that R is a commutative ring, whose unit element is the function δ such that $\delta(1) = 1$ and $\delta(x) = 0$ if $x \neq 1$.

(b) A function is said to be multiplicative if $f(mn) = f(m)f(n)$ whenever m and n are relatively prime. If f, g are multiplicative, show that $f \ast g$ is multiplicative.

(c) Let m be the Möbius function such that $\mu(1) = 1$, $\mu(p_1 \ldots p_r) = (-1)^r$ if p_1, \ldots, p_r are distinct primes, and $\mu(m) = 0$ if m is divisible by p^2 for some prime p. Show that $\mu \ast \phi_1 = \delta$, where ϕ_1 denotes the constant function having value 1.