Math 5051 - Homework 11

Due 11/20/08

1. (Problem 31, page 108) Let \(F(x) = x^2 \sin(x^{-1}) \) and \(G(x) = x^2 \sin(x^{-2}) \) for \(x \neq 0 \), and \(F(0) = G(0) = 0 \).

 (a) \(F \) and \(G \) are differentiable everywhere (including 0).

 (b) \(F \in BV([-1,1]) \), but \(G \notin BV([-1,1]) \).

2. (Problem 35, page 108) If \(F \) and \(G \) are absolutely continuous on \([a, b]\), then so is \(FG \), and

\[
\int_a^b (FG' + GF')(x) \, dx = F(b)G(b) - F(a)G(a)
\]

3. (Problem 37, page 108) \(F : \mathbb{R} \rightarrow \mathbb{C} \) is said to be **Lipschitz continuous** if there is a constant \(M \) such that \(|F(x) - F(y)| \leq M|x-y| \) for all \(x, y \in \mathbb{R} \). Show that \(F \) is Lipschitz continuous iff \(F \) is absolutely continuous and \(|F'| \leq M \) a.e.

4. (Problem 42, page 109) A function \(F : (a, b) \rightarrow \mathbb{R} \) \((\infty \leq a < b \leq \infty)\) is called **convex** if

\[
F(\lambda s + (1-\lambda)t) \leq \lambda F(s) + (1-\lambda)F(t)
\]

for all \(s, t \in (a, b) \) and \(\lambda \in (0, 1) \). (Geometrically, this says that the graph of \(F \) over the interval from \(s \) to \(t \) lies underneath the line segment joining \((s, F(s))\) to \((t, F(t))\).)

 (a) \(F \) is convex iff for all \(s, t, s', t' \in (a, b) \) such that \(s \leq s' < t' \) and \(s < t \leq t' \),

\[
\frac{F(t) - F(s)}{t-s} \leq \frac{F(t') - F(s')}{t'-s'}.
\]

 (b) \(F \) is convex iff \(F \) is absolutely continuous on every compact subinterval of \((a, b)\) and \(F' \) is increasing (on the set where it is defined).

 (c) If \(F \) is convex and \(t_0 \in (a, b) \), there exists \(\beta \in \mathbb{R} \) such that \(F(t) - F(t_0) \geq \beta(t-t_0) \) for all \(t \in (a, b) \).

 (d) (Jensen’s inequality) If \((X, \mathcal{M}, \mu)\) is a measure space with \(\mu(X) = 1 \), \(g : X \rightarrow (a, b) \) is in \(L^1(\mu) \), and \(F \) is convex on \((a, b)\), then

\[
F\left(\int g \, d\mu\right) \leq \int F \circ g \, d\mu.
\]

 (Let \(t_0 = \int g \, d\mu \) and \(t = g(x) \) in (c), and integrate.)