The Minimal Entropy Theorem and
Mostow Rigidity

after G. Besson, G. Courtois and S. Gallot

1 Introduction

A classical “rigidity” result in Geometry, which is similar in form to the
“entropy rigidity” theorem to be discussed in these notes is the well known

' isoperimetric inequality: Let D be a bounded domain in R? with smooth
boundary, let A be the area of D and L the perimeter of its boundary.

Then, the geometric invariant L?/A satisfies the inequality
L2 JA > 4m,

and equality holds exactly when D is a disk.
More generally, given a smooth manifold M, one may have on a space
G(M) of Riemannian metrics on M a functional

F:G(M) - R,

satisfying some inequality F(g) > cp, and the goal is to characterize the
minimizing metrics.

The functional F considered below is associated o the volume entropy of
Riemannian manifolds with negative sectional curvature. It is an asymptotic
measure of growth for the volumes of balls in the universal cover of M.

More precisely, let M be a compact, connected, smooth n-manifold, and
g a Riemannian metric on M. Let X be the universal covering of M and
denote by V,!(R) := Vol(BZ(R)) the volume of the ball of radius R centered
at the point p € X. The (volume) entropy of g is defined as

' 1
h(g) := RETw 7 log VJ(R).

(For the relationship of h(g) with other notions of entropy and its dy-
namical and probabilistic significance see, for example, [9].)



Some elementary (and easy) facts about h(g) are stated in the next
proposition.

Proposition 1.1 On a compact, smooth n-manifold M the limit that de-
fines h(g) always exists and is independent of the choice of point p in the
universal covering of M. (See [11].) Moreover, the functional

F(g) = [h(g)]"Vol(M, g)

has the property that F(g') = F(g), for any two homothetic metrics; that
is, such that g’ = A\g for some X\ > 0. If M has constant sectional curvature
K = —k?, then

h(g) = (n—1)x.

In fact, in this case
R 1 (n—1)xR
— . n— / (n—1)k
VI(R) = e, /0 (= sinh(kp))™! dp ~ ce .

Note, therefore, that F is a dimensionless quantity, which remains the same
whether distances in M are measured in inches, centimeters or light-years.
The next (main) theorem is proved in [4]. It refers to the functional F just
defined.

Theorem 1.2 (Besson-Courtois-Gallot) Let M and N be two compact,
connected, oriented smooth manifolds of same dimension n. Suppose that
there exists a continuous function f : M — N with nonzero degree and that
N is equipped with a locally symmetric Riemannian metric g of negative
curvature. Then, for any metric g on M, one has

F(g) 2 |deg(f)|F(go0)-

Moreover, if n > 3, equality is achieved ezactly when (M, g) is locally sym-
metric and there ezists a positive constant X such that (M, \g) is a Rieman-
nian covering of (N, go), with covering map homotopic to f.

For the many consequences of the theorem, we refer the reader to [4].
The theorem gives a complete answer to a question first posed in a more dy-
namical context by A. Katok in [8] and later posed in the more Riemannian
geometric setting by M. Gromov (see [6, 7]). We only note the following
immediate corollary.



Corollary 1.3 (Mostow) Suppose that M and N are two compact, locally
symmetric spaces of dimension n, n > 3, with strictly negative sectional
curvature. Suppose that M and N are homotopically equivalent. (This last
condition is equivalent to their fundamental groups being isomorphic.) Then,
if Vol(M) = Vol(N), the two manifolds are isometric.

Proof. Since M and N are homotopic equivalent, there exists f : M — N
of degree 1. Moreover, since now both spaces are locally symmetric, the in-
equality of the theorem becomes an equality. Therefore, the two manifolds
are homothetic. Asthey have the same volume they are, in fact, isometric. O

We recall that a locally symmetric space of negative curvature is locally
isometric (up to homothety) to one of the hyperbolic spaces over the reals,
complex numbers, quaternions, or the Cayley number. (The last case only
occurs in real dimension 16, which corresponds to dimension 2 over the
Cayley numbers.)

In these notes we shall prove a special case of the theorem, namely, we
shall assume that (IV, go) has constant negative curvature (equivalently, it is
locally isometric to the real hyperbolic space) and that (M, g) has (a priori
variable) negative curvature. Moreover, f : M — N will be assumed to be
a homotopy equivalence. The first assumption is made for the sake of nota-
tional simplicity, but the condition that the curvature of (M, g) is negative
(as well as the last extra condition) introduces genuine simplifications. (See
[4].)

It is well known that Mostow’s theorem does not hold in dimension
2. In fact, the space of nonisometric (but locally isometric) metrics of
constant curvature —1 on a compact orientable surface S is (essentially)
the Teichmiiller space, which is an analytic manifold of real dimension
6[genus(S) — 1]. It is interesting to isolate what goes wrong in the proof
that we shall discuss. What breaks down is the claim of the the following
exercise.

Proposition 1.4 (The brain in a jar.) Let H be an n X n positive sym-
metric matriz, with trace(H) = 1. Assume that n > 3. Then

det(H) no 1
[det(I — H)]? = [(n - 1)2]

and equality holds if and only if

H=-I
n



Moreover, the same is not true forn = 2.

(Hint: Use Lagrange multipliers.)

2 Patterson-Sullivan measures

The construction of the homothety claimed in the main theorem will in-
volve a certain imbedding of the universal covering of M into the space of
probability measures of its ideal boundary. To make sense of this claim, we
need to introduce a compactification of the universal covering, obtained by
attaching a boundary at infinity.

Let X be a proper metric space, i.e. closed balls are compact. The
group Is(X) of isometries of X endowed with the compact-open topology is
locally compact and second countable. It acts on X with closed orbits and
compact stabilizers. Moreover, for each p € X, denote by d,(¢) = d(p,q)
the distance to p. Denote by C(X) the space of continuous functions on X
with the topology of uniform convergence on compact sets. C'(X) contains
R as the one-dimensional subspace of constant functions. Define C,(X) =
C(X)/R, the space of equivalence classes of continuous functions, where
two functions f,g € C(X) are equivalent if and only if they differ by a
constant. Convergence in the quotient topology can be described as follows:
a; converges to a in C,(X) if and only if there are representatives f;, f in
C(X) such that a; = [f;], @ = [f] and f; converges to f in X. The proof of
the following proposition is straightforward.

Proposition 2.1 The map
i:peX —|[dy)] € CuX)

is an embedding and C.(X) is homeomorphic with the subspace of C(X)
consisting of functions which vanish at a fized point py. Show that C(X)/R
is Hausdorff.

Definition 2.2 Define the closure CI(X) of X as the closure of i(X). The
ideal boundary of X, denoted X(oco) is the complement of i(X) in CI(X).
We refer to the elements of X (00) as the points at infinity of X.

It is immediate from the definitions that for any a = [h] € C1(X) and points
p,q € X, the difference h(p) — h(q) is well defined (independently of the
representative h) and

|h(p) — h(q)| < d(p,q)-



It follows from this equicontinuity property and Arzela-Ascoli Theorem that
CI(X) is compact.

Definition 2.8 A continuous function h € C(X) such that [h] € X (o0)
is called a horofunction. The sublevel sets h=!(—oco,c) are called (open)
horoballs and the level sets h™'(c) are the horospheres. A horosphere asso-
ciated to a point at infinity can thus be regarded as the set of points on X
“equidistant” to that point at infinity. If a = [h] € X(c0) and p,q € X, we
denote

B.(p,q) == h(p) — h(q).

The construction of the Patterson-Sullivan measures that we describe
next is taken from [5]. We continue to assume that X is an arbitrary com-
plete Riemannian manifold.

Definition 2.4 For a positive Radon measure m on X, the number
6 :=inf{s € [0, 00] : / e~ dm(q) < +oo}
X

is independent of p € X and is called the critical exponent of m. The
critical exponent bg of a closed subgroup G of the group Is(X) of isometries
of X is by definition the critical exponent of a positive G-invariant measure
supported on a G-orbit in X. Egquivalently,

b¢ = inf{s € [0,00] : / e~ P9l gy < 4 oo},
e’

We denote by M*(X (c0)) the space of positive Radon measures on the ideal
boundary of X. Then an a-dimensional density for a closed subgroup G in
Is(X) is a continuous G-equivariant map

pip€X — pu, € MT(X(c0))

such that

for all p,q € X. (G-equivariance means that for allp € X and g € G,
Gslip = Hg(p)-)



Proposition 2.5 Let m be a positive Radon measure on X, § its critical
exponent, G := {g € Is(X)|g.m = m}. Assume m(X) = +oo and § < 4oo0.
Then there exists a §-dimensional density p — p, for G such that

supp(p,) C supp(m) N X (oo0)

forallp e X.

The construction depends on the following simple lemma due to Patterson
[13], concerning measures on the real line.

Lemma 2.6 Let p be a positive Radon measure on R, := [0,00). Define
the exponent of u as

6 :=06(u) =inf{s € IR+|/00o e du(t) < +oo}.

Assume that 6 is finite and positive. Show that there exists a continuous
increasing function h : R, — R, such that

1. the integral [;° e **h(e*) du(t) converges for s > & and diverges at
s=20;

2. for all € > 0, there exists ty such that for allt >ty and s > 1

h(st) < t°h(s).

Proof. Choose a decreasing sequence €, > 0 approaching 0. We define
a sequence t;,1ly,... increasing to oo and h as follows. Set t; = 1 and
hljo,t,) = 1. Suppose t, and h|j | already defined. Choose t,,; such that

h(tn) Intnga

tf,," In t‘n

e~ Cmendtdu(t) > 1.

For t € [t,,t,41] define

hit.)

h(t) := —2L¢en,
®) ==

We claim that the integral [;° e=®*h(e*)dpu(t) diverges. In fact,

/100 e *h(e")du(t) Z/llnt e *h(e")du(t)
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The second part of the proposition can be seen as follows. From the defini-
tion of h we have
Inh(t) — Inh(t.) = €, In —.
128
It follows that Inh(t) is a piecewise continuous function of Int with positive
slope bounded above by €, on each interval [t,t,;1]. For any positive ¢,
choose n such that € > ¢,. Then for all ¢ > 1 and all s > t,,

Inh(st) — Inh(t) < e(In st — Int),

fron which the claim follows. O
We start now the proof of the proposition. Given a measure m on X sat-
isfying the hypothesis of the proposition, define for p,ps € X, s > 6 and
¢ € ClI(X):

e—sdm:$) h(ed(”’o) dm(¢)
T T e i@y (ed®0.0) dm(q)’

where h = 1if § = 0 and, if § > 0, h is the function associated by the lemma
to the direct image of m via the proper map ¢ € X + d(pg,¢{) € [0,00).
(One easily checks the equivariance property g.pisp = fsgp)-) Using the
properties of h, one verifies that the family of G-equivariant continuous
maps p € X — p,, € MT(CI(X)), for § < s < § + 1 is equicontinuous
and uniformly bounded on compact sets. This family is therefore relatively
compact in the space of continuous maps C'(X, M*(X(o0)) endowed with
the topology of uniform convergence on compact sets. It follows from part
(1) of the lemma that any accumulation point z — p, of this family takes
its values in M*(X(00)).

dpis ()



One has for p,g € X and s > 6 :

%(C) f— e_SBC(pvq)M.
dlu’s,q h(d(qa C))
The function
h(d(p,¢))
h(d(q,¢))
extends continuously to the closure of X and its value on the ideal boundary
X (00) is 1, due to part (2) of the lemma. The family of functions

(—

¢ €CIX) s em*BPD) c R

for 6§ < s < 6+ 1 is compact. It follows that any accumulation point p — p,
of the family {p > ps,|6 < s < 6+ 1} verifies

dpip —sB
S22y =¢"* ¢ (p.9)
()

and is, therefore, a d-dimensional density for G. This concludes the proof
of the proposition.

3 Convexity and the barycenter

A function f : R — R is convez if for every a < b and s € (0, 1)
fla+s(b—a)) < f(a) + s(f(b) — f(a)).

The function is strictly convex if the above inequality is strict. A subset
W of a Riemannian manifold M is convez if for all p,q € W, there exists
a unique shortest geodesic from p to ¢ (disregarding the parametrization)
contained in W. A function g : M — R is (strictly) convex if for every
nontrivial geodesic ¢ : [0,1] — M, g o ¢ is (strictly) convex.

Proposition 3.1 Let f be a differentiable convex function defined on a con-
vex subset W of a Riemannian manifold M. Then the only critical points
of f in the interior of W are the absolute minima. If f is strictly convex,
there can be at most one critical point.

Proposition 3.2 Let M be a Riemannian manifold of (negative) nonposi-
tive sectional curvature. Then the distance function d: W X W — [0,00) is
(strictly) convez for every convex subset W of M. '



Proof. This means that the function

t > d(c1(t), co(t))

is convex whenever c¢; and ¢, are geodesics in W. The metric properties of
the distance function d, such as convexity, and sectional curvature are related
through the study of the norm of Jacobi fields. (See [10, 3.8.1, page 350].) O

Theorem 3.3 (Hadamard-Cartan) Let M be a complete Riemannian
manifold with nonpositive sectional curvature. Then for any p € M, the
ezponential map exp, : T,M — M is a covering map. In particular, the
universal covering of M is diffeomorphic to R™ and M is a K(x,1)-space.
(The homotopy type is completely determined by the fundamental group.)

The ideal boundary of the universal covering X of a Riemannian manifold
M of nonpositive curvature can be characterized in a very concrete way as
follows. We say that two unit speed geodesics ¢, ¢y : R — X are asymptotic,
¢y ~ ¢y, if there exists a positive constant a such that d(c,(t), c2(t)) < a, for
all ¢ > 0. One obtains this way an equivalence relation on the set of geodesic
rays. The equivalence classes will be denoted [c] and the set of equivalence
classes, K.

Given z;,29 € R and p € M, there exist (unique) geodesic rays ¢; and
cy from p, with unit speed, such that z; = [¢;]. Define

£, (21, 23) := angle between ¢ (0) and c5(0).
Deﬁne similarly the angle between z € R and q € X. Also define the cone
Co(z,€) ={g € XUR|p # q,£,(2,q9) < €}.

The cone topology on X UR is the topology generated by open sets in X and
these cones. The induced topology on R is called the sphere topology. We
have that g; converges to z € R if and only if for every p € X, d(p, ¢;) — oo
and Z,(z,¢;) — 0.

There exists a homeomorphism between the unit sphere S™~' C T,M
and R which associates to each unit vector v at p the class [c,] represented
by the geodesic ray issuing from p with initial velocity v. One shows that
X UR becomes a compactification of X which is homeomorphic to the unit
closed ball in R".

An isometry v of X induces a homeomorphism of the sphere at infinity
R.



Proposition 3.4 The two definitions of boundary, X (00) and R are equiv-
alent. More precisely, there is a homeomorphism between X(oo) and R
which conjugates the induced action of the group of isometries.

Proof. The correspondence if given by the map which associates to each
class [c] of geodesic rays the horofunction

h[c](p) = tllrg[dc(t)] = tll)n;lo[d(a), C(t)) — .

O
The function hy) € C(X)/R defined above is called a Busemann function
for c.

Proposition 3.5 Let h € C(X). Then the following are equivalent.

1. [h] is a Busemann function;
2. [h] is a horofunction;
3. h satisfies the following conditions:

(a) h is conver,

(b) |h(p) — k()| < d(p,q) for allp,qg € X
(c) for allp € X, r > 0, there are q1,q9 € 8B,(p) such that

|h(q1) — h(g2)| = 2r

4. his a convex C' function with ||grad h| = 1.

As an example we consider the case K = —1 and show how one can
describe the second fundamental form of horospheres in RH™. First recall
that given a hypersurface N of a smooth Riemannian manifold X, and v
a smooth local section of the normal bundle of N, one defines the second
fundamental form of N as the bilinear form on T'N such that for u,v € T,N,

L,(u,v) = —(V,v,v).

One easily shows that L is symmetric.

Let h be a C! function on X such that its exterior derivative dh has
norm ||dh| = 1. Equivalently, if v = grad h, assume that ||v]| = 1. Define
the Hessian H), of h as the bilinear form on T'N given by

H,(h)(u,v) = (V,dh)(v) for u,v € T,N.
One checks that the Hessian of h is the (negative of the) second fundamental

of the level hypersurfaces of h.

10



Proposition 3.6 Let M be a compact Riemannian manifold of constant
sectional curvature K = —1 and X its universal covering. Denote by go
the Riemannian metric on X. Let h = hy be a Busemann function on X,
where 8 is an element of the ideal boundary of X . Then, for allp € X and
u,v € T,X,

Hy(h)(u,v) = go(u,v) — dh(u)dh(v).

Proof. Let v be the gradient vector filed of h. Define the function
c: X XR—-X

so that c;(p) = c(p,t) is the geodesic curve through p with initial vector
v(p). Given v € v(p)*, define Y (t) := d(c;),v. Then Y (£) is a Jacobi field
along the geodesic line ¢;(p) such that Y (0) = v and

Jim [V (6] =0
since for any two points p and g in the same level hypersurface of h,

tlif_“oo d(ci(p), ci(q)) = 0.

Moreover, a simple computation shows that ZX(¢) = Vv so that

d
(Vodh) (@) = =Y (¢)lezo > 0, for v £ 0.

This shows that if the sectional curvature of M is negative, the Hessian of
h is positive definite on v(p)*. If K = —1, an elementary calculation shows
that Y (¢) = e‘v(t), where v(t) is the parallel translation of v along c;(p).
Therefore, H,(f)(v,v) = go(v, v), and the claim for general u,v follows. [J

Fix a point py € X and consider for each 6 € X (co) the unique Busemann
function hy of @ such that hy(py) = 0. Let u be a probability measure on
the compact space X (oco) and define the average

hule) = | (@) du(o).

(Choosing a different p, changes h, by a constant.) The unique critical point
of the next proposition is the barycenter of .
Proposition 3.7 If u has no atoms, h, has a unique critical point in X,

corresponding to the (unique) absolute minimum.

11



Proof. We first show that h, is strictly convex. It suffices for that to show
that the quadratic form Vdh, is positive definite. (Notice that, given any
geodesic curve c(t),

d v , SN
75 (s @ ©)le=o = —(dhy, (€(1))) = (Vdh, )(c'(0), ¢(0))

and convexity is implied by the positivity of the second derivative in ¢.)
Now, for each z € X and v € T, X, we have seen that (Vdhy),(u,u) > 0 for
all 8 # 07,05, where 03 are the points at infinity represented by geodesic
rays that issue from z, along the directions +u. As u({07,0;}) = 0, we
have the claim.

Consider now the set

A.:={p € X|h,(p) < c}.

A, is a convex set since h, is convex, and for ¢ > 0, p; € A.. Moreover,
X = Ugsoint(A,) and each set int(A.) has at most one critical point, corre-
sponding to a minimum. Note that each p € A, can therefore be joined to py
by a geodesic ray in A.. Therefore the proposition will be proved if we show
that for any geodesic ray c¢(t) issuing from p along an arbitrary direction w,

Jim b, () = +oo.
Remark that, as hy is convex,

ho(c(0 + sd(p, po))) < ho(c(0)) + slho(d(ps po)) — ha(po)],

so that (hg(po) = 0)

d(q’pO)
h9 (Q) S d(Papo)

For each p on the ray pyd, let

he(p).

Joo(p) = {0 € X(00)|hy(z) < 0}.

The function hy(z) is continuous in 8, so that for each p, Jy,(p) is a compact
subset of X(o00). For every g on the ray from p, to 6y, situated between p
and 6y, we have due to the above inequality that J,(q) C Js,(p). In fact,
since hg(g) — +o0 as ¢ — 6y we have

ﬂ Joo(q) = {00}

g€pobo

12



Therefore,
#(Joo(q)) — n({fo}) = 0.

It follows that there exists p on the ray from py to 0 such that u(Js,(p)) < 1
and a compact set K C X(o0)\Jg,(p) such that p(K) > 0.

Joo @ @ = [ ko) du)+ [ ha(a) dp(6)

X (00)\Jog (2)

> /J PRICEZOR: /K ho(g) dpu(9),

for ¢ between p and 6,. Since for every § € K, hy(p) > C > 0, we have

mia) = [ mla) due) > FERACE)+ GRS [ hota) auo)

d(p, po) d(p, po)
d(g,
> Uop) (C (K)— sup Ihe(p)lu(Jao(Q))) :
d(p, po) 8eX (c0)
Since u(Jy,(q)) — 0 and d(q, pg) — oo as g — by, the claim follows. O

It should be noticed that the barycenter of a measure A, being a critical
point of hy, is defined implicitly by the equation

/ dhe(-) dA(8) = 0,
X(o0)

which is independent of the choice of pg, since changing py changes hy by a
constant.

4 The natural map

Let (M, g) and (N, go) be two n-dimensional compact, negatively curved
manifolds. We assume that they are homotopically equivalent, i.e. there
exist two continuous maps f : M — N and h : N — M such that foh is
homotopic to the identity map of N and ho f is homotopic to the identity
of M. Since M and N are K(m,1) spaces, this hypothesis is equivalent to
their fundamental groups being isomorphic as abstract groups. (See [2].)
We construct in this section a smooth map F' : M — N, the “natural
map,” which will be the candidate for a homothety, when the conditions

13



of the main theorem are satisfied. The construction relies on a number
of classical facts concerning manifolds of negative curvature, which can be
found in complete detail in, say, [2].

Let M be a compact manifold of negative sectional curvature. Let X be
the universal covering of M and I' C Iso(X) the group of deck transforma-
tions. Define m,, = 3. .1 64(p0), Where &, is the Dirac measure concentrate
at p. Then

[ €D dmy,(g) = X e 0o = g, (p, o).

Y€T

Lemma 4.1 The critical exponent § for the measure m,, is equal to the
entropy h(g).

Proof. With the above notation, we recall that

6 :=1inf{s € [0,00] : Y e e < 0},
yer

Define

Spi=# (Ppo (B, (k+ %) _B(k— l))) .

Then
1 1
Sk ~ CVOI(Bp(k -I- '2-) it Bp(k — 5))

- ey

~ c(l- e_h(g))V;g(k + %)

On the other hand,

9s(p,p0) ~ Y Spe™*
k=0
— Z e[l—n_l‘;s-h_s]k‘
k=0
Therefore, § = limsup,,_, 1—“—51& = h(g). O

14



We denote by v, the Patterson-Sullivan measures obtained as in section
2, and define

B (X ()’

a probability measure for each p. I'-equivariance of p — v, implies that
p — 4, is also I-equivariant.

We now proceed to the construction of the natural map F'.

1st. step. (Cf. [2, p. 84]) If M and N are homotopically equivalent,
one can lift the maps f and h to a map between the universal covers X and
Y of M and N, resp., in such a way that

F(v(@)) = p(7) f (=)

for all z € X and v in the group of deck transformations m;(M). Here,
p is the isomorphism between 7;(M) and 7;(N) induced by f. Moreover,
by regularization, f and % can be taken to be C! maps. One can then
show that f is a quasi-isometry between X and Y (cf. [2, p. 86]); here,
compactness of M and N is essential. Finally, a quasi-isometry gives rise to
an homeomorphism between the boundaries at infinity

f: X(00) = Y(o0),

satisfying also the equivariance property

fov=rp(y)of,

where the action of the fundamental group 71 (M) on X (resp., m1(N) on
Y') is extended trivially to an action on X (oco) (resp. Y (c0).)

2nd step. The Patterson-Sullivan measure gives an equivariant map
p — p, from X to the space of probability measures M;(X(c0)) on the
ideal boundary of X. For each p, u, has no atoms. We can now push
forward each measure p, by the continuous map f, thereby constructing a
map

X = Mi(X(0)) > fulp)

The equivariance property of f under the action of m (M) on X (co), and
on Y (oo) via the isomorphism p, shows that p — f.(u,) is equivariant with
respect to the actions of m;(M) on X, and on M;(Y (c0)) via p. Finally,
since f is a homeomorphism, the measures f,(u,) are well defined and have
no atoms.

15



3rd step. We can now define the map F by

F(p) = bar(fu(my)).

It clearly satisfies the equivariance relation

F(v(p)) = p(7)F(»),

~ thus giving rise to a map F' : M — N. Its regularity will be studied in
the next section. Since the map F induces the isomorphism p between the
fundamental groups, it is homotopic to f.

Remark that f is only required to be continuous. In fact, the only
property of f needed to prove the regularity of of F' is that

fu: Mi(Y (00)) = My (X (00))

exists, is linear and sends nonatomic measures to nonatomic measures.

5 Proof of the main theorem

In this section we prove the following special case of the main theorem.

Theorem 5.1 Let (M,g) and (N, go) be two comﬁact, negatively curved
Riemannian n-manifold, such that (N, go) is locally symmetric. Suppose
that M and N are homotopically equivalent. Then, if n > 3, we have

1. [h(g)]" Vol(M, g) > [h(go)]" VoI(N, go).

2. Equalities h(g) = h(go) and Vol(M, g) = Vol(N, go) occur if and only
if (M,g) and (N, go) are isometric.

Most of the effort goes into showing the next proposition.

Proposition 5.2 The natural map F is C* (at least). Furthermore, one
has

1. |JacF(p)| < (;((;))))" forallpe M.

h(go)

F atp is a homothety (of ratio f&%).

2. If for some p € M, |JacF(p)| = (M)n, then the differential dF, of
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To see how the above theorem follows from the proposition, we recall that
F' is a homotopy equivalence and so has degree one. Let wy be the volume
form of the (oriented) manifold (N, go) and w the volume form of (M, g).

Then,
/ Fruwg = / wo = Vol(N, go)
M N
and inequality (1) of the proposition gives
Vol(N, go) < / |[F*wo| = / [(JacF)w|
M N
h(g) )" /
w
(h(go) M

< ( h(ggo) )n Vol(M, g).

IN

Pl
~—

This proves the first part of the Theorem. In the equality case then

h(g) \" _
h(go)) - 1,

for all p € M and hence dF, is a homothety of ratio 1, i.e. and isometry for
allpe M. .

We now proceed to the proof of the proposition. The same notation F'
will be used for a lift of F' : M — N to the universal coverings X and Y. The
inequalities of the proposition will be shown for such lift, but since they are
pointwise, they will also hold for the map between the compact manifolds. -
Denote by Bj (resp. By) the Busemann function of (Y, go) (resp. (X,g)).
Let p,, p € X be the family of Patterson-Sullivan measures on Y (c0). Then
the natural map can be defined implicitly by the equation

(acF) )] = (

[ (@B rm(dfum)6) = 0,
Y (c0)

a vector-valued equation. Equivalently, transfering the integral to the bound-
ary of X, we have

/x( )(ng(a))F(p)(')e"h(g)B"(‘”) d(kpe) (@) = 0.

(We are using here the formula fy(w)l d(fup) = fx(w) lof du.)

17



Choose a frame {e;(¢q)}7; of T,Y depending smoothly on g and define
the function
G=(Gy,....G.):Y x X —»R"

such that
Gi(g,p) = /X( )(dB}(a))q(ei(q))e_h(g)B"‘(") dpo(a).

Then the above integral, which implicitly defines F, takes the form

G(F(p),p) =0.

Since the Busemann functions B and B, are smooth and X (o) is compact,
it is not difficult to see that G is smooth. Then the proof of the fact that F
is C* is a simple application of the implicit function theorem. In fact, if we
denote V,e; = 3°. m;;(v)e;, for v € TX, the differential of G with respect to
g becomes

(01Gi)(gp)v = Z%Gj(q,p) + /X( )(V,,dB?;(a))(ez-(q))e_h(g)B"‘(p) dpo(a).

2

When G(q,p) = 0 the above reduces to

(:Gi)garo = | (VB () (o),

where )\, is a nonatomic measure on X (co). But we know that the latter
integral is the Hessian of

B = / BY . dx
/\P X (o0) F(e) P

which is positive definite, hence 8,G is invertible. Therefore the implicit
function theorem implies that F' is C1.

The implicit function theorem also gives a formula for the differential of
F, as follows. Differentiating G(F(p),p) = 0 with respect to p, we get, for
allv € T,X and u € Tr(,Y:

0 = /X o (Ve 8Bey i () ()

— h(g) /X (@B )ry(w)dB.(0) diy ().

18



The above equality is to be understood as an equality between bilinear forms.
Define the following quadratic forms, K and H, on Tr¢,)Y:

ao(Kr(e ) = /Y o (VedB) iy () dlFok) 0)

go(Hppy(u),u) = /Y - [(dB2)rey (w)]” d(Fursp)(9).

Combining the above formulas with the Cauchy-Schwarz inequality gives:
For all u € Tr,)Y and v € T, X,

90 (AE, 0,0 < B0 ey ) ([ (0B, 00 (@)

(o0)

It should be noticed that the symmetric endomorphism K is invertible since
the bilineat form go(K-,-) is the Hessian of the strictly convex function B
introduced before. This is what will allow us to compute the Jacobian of F'.
We recall that the Jacobian of F' is the determinant of dF, computed with
respect to orthonormal basis of (1, X, g) and (Tr(,)Y, g0)-

Lemma 5.3 With the above notations, we have:
h™(g)(detH )/
nt/2detK
Proof. 1f the rank of dF, is not maximal, the Jacobian determinant of F' at
p is zero and the inequality is trivially satisfied. We can therefore assume

that dF, is invertible. Let {u;} be an orthonormal basis of 7)Y which
diagonalizes the endomorphism H. Define

v, = (K o dF,)™" (u;).

|JacF'(p)| <

(Recall that K is also invertible.) Applying the orthonormalization process
to v}, we obtain a basis {v;} of T, X. The matrix of K o dF, written in the
basis {v;} and {u;} is then triangular, so that

n

det(K o dF,) = (detK)(JacF(y)) = [[{K (dF, (v:)), us)o.

=0
Here we identify endomorphisms with matrices using the basis involved. The
previous inequality then gives

n n 1/2
(det) JacF (v)] < h"(g) [T (Hrus, ) [T ( [ B2 dma)) .

i=1 =1
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Using the fact that

(ﬁ ;)" < }‘iai
i=1 "ot

and that .
; KdBa)p('Ui)]2 = ”(dBa)plli =1,
we obtain:
n 1/2 n
11 ( /. (@B, 0] du,,(a)) < (Z Jeo
1
> W

The desired inequality now follows.

Recall now that if g, has constant sectional curvature —1,
VdB°(:,-) = go(-,-) — dB°(-)dB°("),
which gives after integration
K=I-H.
It should also be noticed that
trace(H) =1,

since
trace(H) = Z(HF(p)(ui):ui)O
=1

= /x(oo); [(dBY)rpy (wi)] ™ d(fupsn)(0)
1.

The proposition now follows from the above results.
We recall that if n > 3,

det(H) n "
Aot — 0P = [(n = 1)2]

20
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and equality holds if and only if
1
H=-I.
n
We consider now the equality case, i.e. we suppose that
h(g) \"
JacF(p)| = ( —-—) .
I v ( )l h(go)

Then forall p e X

1 n—1 A

It follows that

1

2

%h(g) % v)]? o
aylulo ( J o (@B 0 dt ))

for all v € T, X and u € Tp(,)Y. By taking the supremum in u € Tr@,)Y
such that ||u|lp = 1, one gets

{dF,(v), u)o| < m

3 hla) A du (e :
B <t ([ (@B, dine)

for all v € T, X. Let L be the endomorphism of T, X defined by
L= (dF;)" o (dF;)

and {v;} a g-orthonormal basis of T, X. Then we have

n

trace(L) = > (Lv;,v;),

=1
n

= Y (dF,(v:), dFy(vi))o

i=1

< n (}?((:0))>2’

N\ /

where we have again used the fact that |dB]|, = 1.
We have now

(;’:((gi)))zn = |JacF(p)|> = detL < (i—traeeL)n < ( h(g) )Qn’

21



Therefore the determinant of L is (traceL)" and

L= (:&90)))21.

This precisely means that dF, is an isometry composed with a homothety
of ratio h(g)/h(go).
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