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1 Introduction

Let M be a smooth manifold, G a geometric structure on M , and G a
Lie group that acts on M so as to leave G invariant. In other words, G
is a group of isometries of (M,G). The subject of these lectures will be
the general interplay between the dynamics of the G-action on M and the
geometry of (M,G), as well as how these relate to the topology of M . The
case of a semisimple G will be of particular interest to us.

Even with the constraint that G be semisimple, the objective stated
above will certainly seem too general and vague. There are, however, some
interesting and effective ideas that apply to a large class of geometric struc-
tures and actions. The main results that will be discussed here are due
to M. Gromov, and are introduced and further explored in his paper [10].
The techniques that relate more directly to the dynamics of semisimple Lie
groups, in the way that is used here, are due to R. Zimmer. Put together,
their ideas form somewhat of a coherent framework, and it is the main point
of these lectures to give an introduction to this Gromov-Zimmer machine,
and to illustrate its use with a small number of representative results.

This is not meant to be a survey of the area. The main theorem of the
notes is Gromov’s theorem 4.1, although some of the ingredients used in
its proof will be of independent interest. Many more related results can be
found by going to the main sources of the lectures: [23], [10], [5], [22], and
the references cited in them.
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The first section (section 2) deals with the basic language and facts about
geometric structures and their isometries. Sections 3 and 4 introduce the
notion of a rigid structure and states a fundamental result of Gromov’s re-
lating infinitesimal and local isometries, whose proof is provided in detail
in section 5. The relationship between dynamics and geometry is the main
theme of section 6. The results given there are mostly due to Zimmer. Fi-
nally, section 7 brings the fundamental group of the manifold into the picture
by showing that nontrivial actions of semisimple Lie groups by isometries
of rigid unimodular analytic structures can only be supported by manifolds
with “large” fundamental groups.

Some background material concerning dynamical systems, algebraic group
actions, and semisimple Lie groups is provided in the appendices. The text
[6] can also serve as a useful introduction to part of the subject of the present
notes.

2 Geometric structures

We introduce here a general definition of geometric structure on manifolds
and illustrate it with a number of examples. The material presented here is,
for the most part, either standard (see, for example, [14]) or comes from [10],
or both. It will be assumed that the reader has some familiarity with the
language of principal bundles and jets, although no deep facts concerning
them will be used here. A good reference for that subject is [16]. We
introduce in the next paragraph some notation and first definitions on jets.

Let M and N be smooth manifolds and let f, g be smooth maps from
some neighborhood of a point x ∈M into N . We say that f and g represent
the same r-jet at x if f(x) = g(x) = y and with respect to some choice of
smooth coordinates near x and y, all partial derivatives of f and g up to order
r agree. More precisely, let ti, 1 ≤ i ≤ dimM , be smooth coordinates near
x, let uj , 1 ≤ j ≤ dimN , be smooth coordinates near y, and represent by Di

the partial derivative with respect to ti. Let α = (α1, . . . , αn) be a vector of
nonnegative integers and define Dα = Dα1

1 · · ·Dαn
n . Then f and g represent

the same r-jet at x if for each i and α such that |α| := α1 + · · ·+ αn ≤ r

Dα(ui ◦ f)x = Dα(ui ◦ g)x.

This defines an equivalence relation on Cr local maps, which we denote by

f
r∼
x
g.
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The equivalence relation does not depend on the choice of coordinates. The
equivalence class represented by f is called the r-jet of f at x and is denoted
jrfx. The r-jets of local Cr maps comprise the r-jet space Jr(M,N). This
is a smooth manifold. Smooth local coordinates can be set on Jr(M,N) as
follows:

ui
α(jrfx) := Dα(ui ◦ f)x.

The r-jet of a smooth vector field is also defined, by regarding the vector
field as a map (section) from M into TM .

A (smooth) parametrization of an open subset U ⊂ M is a (smooth)
diffeomorphism from an open subset of Rn onto U . We say that ϕ : U0 → U
is a parametrization at x if 0 ∈ U0, x ∈ U and ϕ(0) = x.

A frame of order r at x ∈M is the r-jet at x of a smooth parametrization
at x. A frame of order 1 at x is naturally identified with a linear isomorphism
from Rn onto the tangent space TxM . In the general case, the equivalence
class represented by a parametrization ϕ will be denoted (jrϕ)0 – the r-th
jet of ϕ at 0.

The collection of all frames over points of M forms in a natural way a
smooth manifold, which will be called the r-th order frame bundle of M and
will be denoted F r(M). This is indeed a locally trivial fiber bundle over M
and the bundle map π : F r(M) → M is the obvious base point projection,
which to each (jrϕ)0 associates ϕ(0).

Having fixed a frame ξ = (jrϕ)0 at x, any other frame of order r at the
same point is given by ξg, where g = (jrf)0 is the r-jet of a diffeomorphism f
from a neighborhood of 0 into another neighborhood of 0 such that f(0) = 0.
By definition,

ξg := jr(ϕ ◦ f)0.

The collection of all r-jets at 0 of local diffeomorphisms of Rn fixing
0 forms a Lie group, denoted here Gr = Gr(n,R). Notice that G1 is the
general linear group GL(n,R). It can be shown that Gr is in a natural way a
linear real algebraic group. (Gr can be regarded as a subgroup of GL(V r−1)
of all invertible linear transformation of the vector space of r − 1 jets at 0
of smooth vector fields on Rn.)

The map F r(M)×Gr → F r(M) given by (ξ, g) 7→ ξg is a smooth group
action that sends each fiber of F r(M) onto itself. It is clear, furthermore,
that the action is transitive on each fiber. With this action, F r(M) becomes
a principal bundle. A smooth parametrization of an open subset U ⊂M can
be used to trivialize F r(M) above U , making π−1(U) ⊂ F r(M) isomorphic
to the trivial bundle U ×Gr.
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We are now ready to give the definition of a geometric structure on M .
Let V be a space (with further structure to be specified later) equipped with
a (left) action of Gr. A geometric structure on M of order r and type V is
a map G : F r(M) → V that satisfies the Gr-equivariance property:

G(ξg) = g−1G(ξ).

When V is a smooth manifold, we say that the geometric structure is smooth
(resp. Cr, real analytic, continuous, measurable, etc.) if the equivariant map
G is smooth (resp. Cr, real analytic, continuous, measurable).

A geometric structure (of any degree of regularity) is an A-structure or
a structure of algebraic type if V is a smooth real algebraic variety and the
left action of Gr on V is also algebraic. As will be seen in the examples
below, geometric structures ordinarily considered in differential geometry
are A-structures.

We give next a collection of examples. In each case, M is a manifold of
dimension n and F (M) = F 1(M).

0. Structures of order 0. By convention, F 0(M) = M and G0 is the
trivial group. Then, a structure of order 0 and type V is simply a map
G : M → V .

1. L-structures. Let L be a closed subgroup of Gr and P ⊂ F r(M) a
subset such that the restriction of πr to P is a principal L-bundle. Each
ξ ∈ F r(M) is naturally associated to a coset in Gr/L so that P defines a
Gr-equivariant map G : F r(M) → V , where V = Gr/L. We say that G is an
L-structure of order r. Conversely, if G : F r(M) → Gr/L is an equivariant
map, it is easily seen to produce an L-reduction of F r(M), i.e., a principal
subbundle P ⊂ F r(M) with group L such that the right L-action on P is
the restriction of the Gr-action on F r(M). In fact, P = G−1(L), where L
represents here the identity coset in Gr/L. The reader will notice that most
of the examples given next are L-structures.

2. Complete parallelism. This is defined by the assignment of a linear
frame (linear isomorphism) σ(x) : Rn → TxM to each x ∈ M – in other
words: a section of F (M). Alternatively, complete parallelism can be defined
by a GL(n,R)-equivariant map G : F (M) → GL(n,R), where GL(n,R) acts
on V = GL(n,R) by left-multiplication. The relationship between G and σ
is that

ξ = σ(x)A⇔ G(ξ) = A−1.

A complete parallelism on M is an L-structure of order 1, where L is the
trivial group.
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More generally, a complete parallelism of F r(M) defines a geometric
structure of order r + 1. Here V = GL(N,R), where N is the dimension
of F r(M) and the map G : F r+1(M) → V is defined as follows. For each
ξ ∈ F r+1(M), set ξ̄ = πr+1

r (ξ) ∈ F r(M); notice that ξ gives rise to a linear
subspace of Tξ̄F

r(M) transverse to the fiber of F r(M) →M at ξ̄, which we
denote L(ξ). The linear isomorphism dπr

ξ̄
: L(ξ) → TxM defines on L(ξ) a

frame given by dπr
ξ̄
◦ πr+1

1 (ξ). On the other hand, the tangent space of the
fiber of F r(M) at ξ̄ is naturally isomorphic to the Lie algebra of Gr, due to
the principal action of Gr on F r(M). Therefore, we obtain in a canonical
way a frame of Tπr+1

r (ξ)F
r(M). The desired G(ξ) is now the change of basis

matrix between the two frames: the one just constructed and the one given
by a parallelism of F r(M).

3. Volume-form. By a volume form we mean a (smooth, Cr, continuous,
measurable, etc.) assignment of a non-vanishing n-form on each TxM . It
can be given by an equivariant map G : F (M) → V where V denotes the
space of non-zero alternating n-forms on Rn. Let µ0 be the n-form

µ0(u1, . . . , un) = det(uij)

where uij are the entries of the matrix whose columns are the vectors
u1, . . . , un ∈ Rn. The general linear group acts transitively on V and the
isotropy subgroup of µ0 is SL(n,R). An SL(n,R)-reduction of F (M) de-
termines a volume form on M , and the equivariant map G defined by ν is
given as follows: to each ξ ∈ F (M)x, G(ξ) is the n-form on Rn given by
ν(x)(ξ·, . . . , ξ·).

4. Pseudo-Riemannian metric. Here, V is the space of nondegenerate
symmetric bilinear forms on Rn of signature s. The (transitive) action of
GL(n,R) corresponds to left-multiplication on GL(n,R)/O(p, n− p), where
s = 2p− n is the signature and O(p, n− p) is the isotropy subgroup of

β0(u, u) := u2
1 + · · ·+ u2

p − u2
p+1 − · · · − u2

n.

(We are identifying here a transitive G-space and the corresponding homo-
geneous space.) The action of GL(n,R) on V can be written as

gB = B(g−1·, g−1·).

The map G : F (M) → V corresponds to the assignment of a symmetric
bilinear form 〈·, ·〉x on each tangent space TxM by the relation

〈v, w〉x = G(ξ)(ξ−1v, ξ−1w)
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where ξ is any element in the fiber above x. GL(n,R)-equivariance of G,
which translates to the property G(ξg)(·, ·) = G(ξ)(g·, g·), implies that 〈·, ·〉x
does not depend on the choice of ξ.

If instead of O(p, n − p) we use the group CO(p, n − p) that leaves
β0 invariant up to scalar, we obtain the definition of a conformal pseudo-
Riemannian structure.

5. Tensor fields. Let ρ be a linear representation of GL(n,R) on W ,
ρ : GL(n,R) → GL(W ). A tensor field of type W may be defined by a
GL(n,R)-equivariant map G : F (M) → W , where equivariance in this case
is defined by

G(ξA) = ρ(A)−1G(ξ)

for all A ∈ GL(n,R) and ξ ∈ F (M). For example, when

W = (
r⊗

Rn∗)⊗ (
s⊗

Rn)

and ρ is the representation obtained from the standard representation of
GL(n,R) on Rn, the map G is equivalent to having a section of the vector
bundle T (r,s)M of tensors of type (r, s). A section of T (r,s)M is called a
tensor field of type (r, s). Notice that a vector field is a section of T (0,1)M
and an n-form is a section of T (n,0)M .

Tensor fields are not necessarily L-structures. For example, a field of
endomorphisms, that is, a tensor field of type (1, 1), is an L-structure exactly
when it has the same Jordan normal form, J ∈ GL(n,R), at every point of
M , in which case L is the centralizer of J in GL(n,R).

6. Subbundles of TM . Viewing Rm as the subspace of Rn of vectors
with the last n −m components equal to 0, we let GL(n,m,R) denote the
subgroup of GL(n,R) consisting of invertible matrices that map Rm into
itself. The group GL(n,m,R) is the isotropy subgroup of Rm for the tran-
sitive action of GL(n,R) on the Grassmannian variety V of m-dimensional
subspaces of Rn. A smooth GL(n,m,R)-reduction of F (M) corresponds to
a smooth field x 7→ D(x) of m-dimensional subspaces D(x) of TxM . The
equivariant map G associated to D sends each ξ ∈ F (M) to the subspace
ξ−1D(x) ⊂ Rn, x = p(ξ).

Before considering some examples of second order structures, we need
to understand a little better the group G2. The second order jet of a local
diffeomorphism ϕ : Rn → Rn fixing the origin of Rn is completely specified
by a pair (A,α) such that A ∈ GL(n,R) and α ∈ N2 := S2(Rn)∗⊗Rn is an
Rn-valued symmetric bilinear form. Indeed, we can think of (A,α) as the
Taylor polynomial of ϕ of order 2. (More precisely, the second degree Rn-
valued polynomial approximating ϕ is Ax+α(x, x).) If ϕ and ψ have Taylor
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polynomials (A,α) and (B, β), respectively, then the composition ϕ ◦ ψ has
Taylor polynomial (AB,α(B·, B·) + β). The group G2 can, therefore, be
given the following description. G2 = GL(n,R) n N2, with multiplication
given by:

(A,α)(B, β) := (AB,α(B·, B·) +Aβ).

It follows that the inverse operation is (A,α)−1 := (A−1,−A−1α(A−1·, A−1·)).
In the general case, Gr can be described inductively as a semidirect

product of Gr−1 with the vector space (abelian group) Sr(Rn)∗ ⊗ Rn of
symmetric n-linear forms on Rn taking values in Rn.

7. Linear connections. Let V be the space of all Rn-valued bilinear maps
Γ : Rn ×Rn → Rn, which we regard as the space of Christoffel symbols. To
describe the action of G2 on V first notice that N2 is a linear subspace of
V and that G2 is a closed subgroup of GL(n,R) n V , where the later has
the same multiplication and inverse operations as for G2. Then V can be
identified with the coset space

W = GL(n,R)\GL(n,R) n V

by setting Γ 7→ GL(n,R)(I,Γ). The group G2 naturally acts on W by right
multiplication, yielding the following (right) action on V :

Γ · (A,α) := A−1Γ(A·, A·) +A−1α.

(We can easily rewrite the above so as to turn it into a left action, by
setting g · Γ = Γg−1.) Notice that this is the familiar law of transformation
of Christoffel symbols. Thus, in the language used in these notes, a linear
connection corresponds to a G2-equivariant map G : F 2(M) → V. The
relationship between G and the notion of a covariant derivative is that if
ξ ∈ F 2(M) is the 2-jet (at 0) of a smooth parametrization ϕ around x ∈M
(with ϕ(0) = x) and Xi are the coordinate vector fields associated to ϕ,
then

(∇XiXj)x =
n∑

k=1

G(ξ)k
ijXk

where G(ξ)k
ij is the k-th component of G(ξ)(ei, ej) with respect to the stan-

dard basis {e1, . . . , en} of Rn. Also notice that a symmetric (torsion-free)
connection is one for which the map G takes values into GL(n,R)\G2 ⊂ V .

It is not difficult to show that a linear connection gives rise to a subbundle
of TF 1(M) everywhere transverse to the fibers (a horizontal distribution),
and therefore, to a complete parallelism of F 1(M). One may define a gen-
eralized connection of order r on M as a horizontal distribution on F r(M).
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This is a structure of order r + 1 that gives rise to a complete parallelism
on F r(M).

8. Projective structures. A (smooth) projective structure is an equiva-
lence class of (smooth) connections, two connections being equivalent if and
only if they define the same geodesic lines, without regard to parameter.
Since we can also find a torsion-free connection in each such equivalence
class, we may assume that the equivalence relation is on the space of sym-
metric connections. A projective structure may also be defined by an equiv-
ariant map G : F 2(M) → V , where V is the coset space H\G2, with the
natural right action of G2, and H is the subgroup of G2 of all (A,α) such
that

α = −A⊗ σ + σ ⊗A

2
for a linear functional σ on Rn.

9. Symplectic structure. A symplectic form is a non-degenerate 2-form
with the added assumption that it is closed. A smooth alternating and
nondegenerate 2-form is clearly a first order structure and is a special case
of example 5. The condition that it is a closed form can be incorporated
by describing it as a second order structure, as follows. Let Λ be the space
of alternating bilinear forms on Rn. The linear space Λ ⊕ [Λ ⊗ (Rn)∗] may
be regarded as the space of 1-jets (at 0) of 2-forms in Rn. Given (ω, ν) in
Λ⊕ [Λ⊗(Rn)∗], and vectors u1, u2, u3 ∈ Rn, then ν(u1, u2, u3) =: ν(u1, u2)u3

is regarded as the directional derivative at 0 of the smooth 2-form evaluated
on the constant vector fields u1, u2 along the direction determined by u3. The
1-jet of a closed 2-form is given by a pair (ω, ν) such that for all u1, u2, u3

in Rn the relation

ν(u1, u2)u3 + ν(u2, u3)u1 + ν(u3, u1)u2 = 0

holds. We now define V as the subset of Λ⊕[Λ⊗(Rn)∗] of all pairs (ω, ν) such
that ω is nondegenerate and ν satisfies the above identity. The group G2 acts
on V as follows (this corresponds to the pull-back of forms): (ω, ν)(A,α) =
(ω′, ν ′) where ω1 = ω(A·, A·) and for u1, u2, u3 ∈ Rn,

ν ′(u1, u2)u3 = ν(Au1, Au2)u3 + 2[ω(Au1, α(u2, u3)) + ω(α(u1, u3), Au2)].

A symplectic form is now a G2-equivariant map G : F 2(M) → V .
10. Homogeneous structures. Suppose that M0 = G/H, where G is a

connected Lie group andH is a connected closed subgroup of G. We suppose
that H does not contain a proper normal subgroup of G, which implies that
the action of G on M0 by left multiplication is an effective transitive action.
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(An action is said to be effective if for each g ∈ G there exists x ∈M0 such
that gx 6= x.) It can be shown that there exists a positive integer k such that
the natural action of G on F k(M0) is free and proper, so that we can define
the quotient V = G\F k(M0). Notice that V admits a right action of Gk

coming from the action on the F k(M0). A homogeneous structure of order
k and type (G,M0) on a manifold M is defined as a Gk-equivariant map
G : F k(M) → V . This corresponds to the assignment, for each x ∈M , of an
equivalence class of k-jets at x of local diffeomorphisms from a neighborhood
of x into M0 under the equivalence relation defined by the natural action of
G on the space of such jets.

11. Itô vector fields. An interesting example of a second order geometric
structure arises in the study of stochastic processes on manifolds. Define on
V = Rn ×GL(n,R) the G2-action:

(A,α)(u, L) = (Au+ Trα(L·, L·)/2, AL)

for (A,α) ∈ G2 and (u, L) ∈ V , where Trα(L·, L·) =
∑n

i=1 α(Lei, Lei) for an
orthonormal basis of Rn. A G2-equivariant map G : F 2(M) → V specifies
an (Itô) stochastic differential equation on M . (See [7] and the references
cited there.)

We give next a couple of examples of non-A structures. Perhaps surpris-
ingly, example 13 behaves in some important respects like an A-structure.
(See [22], chapter 3.)

12. Anosov diffeomorphisms. Let f : M → M be an Anosov dif-
feomorphism of a compact manifold M . (See [13].) The diffeomorphism
f1 : F 1(M) → F 1(M) naturally induced by f generates a Z-action on
F 1(M) and it can be shown (from the definition of an Anosov map) that
this is a proper action. Set V = F 1(M)/Z and let G : F 1(M) → V be
the natural projection. Then G is a smooth geometric structure, but not of
algebraic type.

13. “Random” structures. Given a manifold V (or, more generally, a
complete separable metric space), define the space P(V ) of Borel probability
measures on V . (A probability measure µ on V is a positive measure such
that µ(V ) = 1.) By the Riesz representation theorem, P(V ) = C0(V )∗ –
the space of bounded linear functionals on the space of continuous functions
on V that vanish at ∞. We give P(V ) the weak*-topology: a sequence of
probability measures µn converges to µ if for all f ∈ C0(V ) the sequence of
numbers

∫
fdµn converges to

∫
fdµ.

Suppose now that V comes with a continuous action of Gr. There is then
a continuous action of Gr on P(V ), which is defined as follows: if g : V → V
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is any homeomorphism of V and µ ∈ P(V ), then g∗µ is the probability
measure characterized by

∫
f d(g∗µ) =

∫
f ◦ g dµ for all f ∈ C0(V ). We

can now define a geometric structure of type P(V ) on a manifold M as a
Gr-equivariant (continuous) map G : F r(M) → P(V ).

If V is as in example 6, then G would assign in a continuous way to each
x ∈ M a probability measure µx on the Grassmannian variety of TxM . As
a special case, if µx is a point mass for each x, we return to the ordinary
notion of a continuous subbundle of TM . Such “random” plane bundles
play a role in Zimmer’s proof of the Margulis superrigidity theorem. (See
[22] and [6].)

Prolongations of geometric structures. Given a smooth geometric
structure of order r on a manifold M , its s-jet, appropriately defined, may
be regarded as a geometric structure of order r + s. This is called the
prolongation of order s of the initial structure. The precise definition is
given below. It should be noticed that the prolongation of any order of an
A-structure is also an A-structure.

We denote by Js
nG

r the group of s-jets at 0 of smooth maps from a
neighborhood of 0 ∈ Rn into Gr. The group multiplication is defined in the
natural way: (jsϕ1)0·(jsϕ2)0 := js(ϕ1ϕ2)0. Notice that if η = (jsϕ)0 ∈ Js

nG
r

and h = (jsf)0 ∈ Gs, then ηh := js(ϕ ◦ f)0 defines a right action of Gs on
Js

nG
r. With this action, we make the semidirect product Gs n Js

nG
r, in

which the group multiplication is

(h, η)(h′, η′) = (hh′, η(η′h−1)).

The definition of prolongation of geometric structures will require the
homomorphic embedding of Gr+s into Gs n Js

nG
r that we give next. Let

τx : y 7→ y − x be the translation in Rn. Given g = (jr+sf)0 ∈ Gr+1,
the map fx := τx ◦ f ◦ τ−f−1(x), for x is a small neighborhood of 0, is a
local diffeomorphism of Rn fixing 0. Therefore, for each x one has f r(x) :=
(jrfx)0 ∈ Gr. Its s-jet at 0 only depends on g (the r + s-jet of f) and is an
element of Js

nG
r. We denote it by a(g).

The desired homomorphism ir,s : Gr+s → Gs n Js
nG

r is now given by

ir,s(g) = (πr+s
s (g), a(g))

where πr+s
s : Gr+s → Gs is the natural projection. That this is indeed a

homomorphism follows from the fact that a satisfies

a(g1g2) = a(g1) · [a(g2)πr+s
s (g1)−1].
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Suppose now that V is a smooth manifold with a smooth (left) action
of Gr on it. We denote the action of g on v simply as gv. Then Js

nV – the
space of s-jets at 0 of smooth maps from (a neighborhood of 0 in ) Rn into
V – supports the following action of Gs n Js

nG
r: for (h, ξ) ∈ Gs n Js

nG
r and

η ∈ Js
nV define

(h, ξ)η := ξ · (ηh−1).

(The dot operation is defined by (jsf)0 · (jsv)0 := js(fv)0 and the right
action of Gs on Js

nV is defined just as the right action of Gs on Js
nG

r

introduced earlier.) In combination with the homomorphism ir,s we obtain,
by restriction, an action of Gr+s on Js

nV .
Finally, the s-prolongation of a smooth geometric structure G : F r(M) →

V is defined as Gs : F r+s(M) → Js
nV such that

Gs(η) := js(G ◦ ϕ̄r)0

where η = (jr+sϕ)0 ∈ F r+s(M) and ϕ̄r(x) := jr(ϕ ◦ τ−x)0 ∈ F r(M), for
each x ∈ Rn sufficiently close to 0.

It can be shown that Gs is indeed a Gr+s-equivariant map. Further-
more, if ps : Js+1

n V → Js
nV and πs : F s+1(M) → F s(M) are the natural

projections, then
Gs ◦ πr = pr ◦ Gs+1

for each s.
The first prolongation of a frame field. We saw in example 2 of the

previous subsection that a frame field on M can be described by a GL(n,R)-
equivariant map G : F 1(M) → GL(n,R). The first prolongation of a smooth
frame field is similarly described by a G2-equivariant map G1 : F 2(M) →
J1

nG (G = GL(n,R)). There is a natural identification of J1
nG and G×W ,

where W = Rn∗⊗Rn∗⊗Rn, which uses that each tangent TgG is isomorphic
to TeG = g = Rn∗ ⊗ Rn under the derivative of the left-translation map by
g−1. In this way G×W is a Lie group, with multiplication given by

(g1, α1)(g2, α2) = (g1g2,Ad(g2)−1 ◦ α1 + α2).

(Ad(g)X = gXg−1, X ∈ g.) The right-multiplication of J1
nG by G is simply

((g, α), h) = (g, α ◦ h).

and the semidirect product structure on Gn J1
nG corresponds to the multi-

plication

(h, (g, α))(h′, (g′, α′)) = (hh′, (gg′,Ad(g′)−1 ◦ α+ α′ ◦ h−1)).
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Representing an element of G2 by the pair (h, η), where h ∈ G and η ∈
S2(Rn∗)⊗ Rn ⊂ Rn∗ ⊗ g, the homomorphic imbedding of G2 into Gn J1

nG
corresponds to the map

(h, η) 7→ (h, (h, η(h−1·, ·))).

Finally, the (left) action of G2 on J1
nG, involved in the first prolongation of

a frame field is given by

(h, η)(g, α) = (hg,Ad(g)−1 ◦ η(h−1·, ·) + α ◦ h−1).

If N is the kernel of the natural projection from G2 onto G, it is not
difficult to check that the quotient J1

nG/N is a vector bundle over G with
typical fiber Λ2(Rn∗) ⊗ Rn. The map Ḡ : F 1(M) → J1

nG/N is a first
order structure that corresponds to giving at each x the frame at x and
the (antisymmetric) coefficients of the Lie brackets between vector fields in
the frame field.

Prolongation of affine connections. Recall that a symmetric connection
is a geometric structure with

V = S2(Rn)∗ ⊗ Rn

and the action of G2 on V is given by

(A,α) · Γ = AΓ(A−1·, A−1·)− α(A−1·, A−1·).

It will be convenient to introduce (global) coordinates on Gr and Js
nV .

On Gr, coordinates βi
j1···jk

: Gr → R (1 ≤ i ≤ n, 1 ≤ j1 ≤ · · · ≤ jk ≤ n) are
defined by

βi
j1···jk

((jsϕ)0) = (Dj1 · · ·Djk
(ϕ−1)i)(0)

where (ϕ−1)i is the i-th component of the inverse of ϕ, Dj denotes the
partial derivative with respect to the j-th coordinate of Rn, and k ≤ r. Also
introduce

αi
j((j

sϕ)0) = βi
j((j

sϕ−1)0).

Define (global) coordinates Γi
j1j2,k1···kl

on Js
nV as follows: Γi

jk(v) is the
i-th component of the vector v(ej , ej), v ∈ V , where as always {e1, . . . , en}
stands for the canonical basis of Rn, and

Γi
j1j2,k1···kl

((jsv)0) = Dk1 · · ·Dkl
(Γi

j1j2 ◦ v)(0).

12



An elementary calculation shows that the action of G3 on J1
nV obtained

by 1-prolongation of the action of G2 on V is given in the above coordinates
as follows: for g ∈ G3 and ξ ∈ J1

nV ,

Γi
jk(gξ) = αi

p(β
q
jβ

r
kΓ

p
qr + βp

jk)

Γi
jk,m(gξ) = −αi

sα
t
pβ

s
tm(βq

jβ
r
kΓ

p
qr + βp

jk)+

+ αi
p((β

q
jmβ

r
k + βq

jβ
r
km)Γp

qr + βq
jβ

r
kβ

t
mΓp

qr,t + βp
jkm).

(We are using here the usual summation convention. For simplicity, we
dropped g and ξ from the right-hand side of the equations.)

In spite of its messy expression, the next proposition shows that it is
possible to obtain some useful information about the action of G3 on J1

nV .
Define the functions Ri

jkm : J1
nV → R by

Ri
jkm = Γi

jk,m − Γi
jm,k + Γi

pmΓp
jk − Γi

pkΓ
p
jm.

These are the components of the formal curvature tensor. If N r denotes the
kernel of the projection homomorphism πr

1 : Gr → G1 = GL(n,R), then it
is easily shown that the functions Ri

jkm are N3-invariant. (This is simply
an expression of the multilinearity of the curvature tensor.)

The following proposition is proved in [15].

Proposition 2.1 Js
nV is a (trivial) left principal N s+2-bundle and its base

V̄ = N s+2\Js
nV is diffeomorphic to Rd, for some positive integer d. Further-

more, GL(n,R) naturally acts on V̄ in such a way that the bundle projection
ρ : Js

nV → V̄ is equivariant, that is, ρ(gξ) = πs+2
1 (g)ρ(ξ) for g ∈ Gs+2 and

ξ ∈ Js
nV . (This is also true for linear connections with torsion, after replac-

ing V with Rn∗⊗Rn∗⊗Rn.) Let, now, s = 1. Then d = n2(n2− 1)/3 and if
R̄i

jkm are the functions on V̄ defined by Ri
jkm = R̄i

jkm ◦ ρ, then from among
the R̄i

jkm one can extract a coordinate system for V̄ .

By counting dimensions, it follows from Proposition 2.1 that the well-
known symmetries of the (formal) curvature tensor

Ri
jkm +Ri

jmk = 0, Ri
jkm +Ri

mjk +Ri
kmj = 0

are the only dependencies among these functions.

3 Isometries

A diffeomorphism f of the smooth manifold M induces a diffeomorphism
f r of F r(M) by setting f r((jrϕ)0) := jr(f ◦ ϕ)0. If g ∈ Gr and ξ ∈ F r(M),
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then clearly f r(ξg) = f r(ξ)g, so that f r is an automorphism of the principal
Gr-bundle F r(M).

Let G : F r(M) → V be a smooth geometric structure on M of type V
and order r. A diffeomorphism f : M →M is said to be an isometry of G if

G ◦ f r = G.

The collection of all isometries of a geometric structure G on M forms
a group, denoted Iso(M,G). This is a topological group, with the compact-
open topology.

Take as an example a pseudo-Riemannian metric on M (example 4). We
remark that f1(ξ) = dfx ◦ ξ, where dfx : TxM → Tf(x)M is the tangent map
associated to f . Then the condition G◦f1 = G is easily seen to be equivalent
to

〈v, w〉f(x) = 〈(dfx)−1v, (dfx)−1w〉x.

(We are using the notations of example 4.) This is the ordinary notion of
isometry for a pseudo-Riemannian metric 〈·, ·〉.

Local and infinitesimal isometries. If U is an open subset of M ,
we will denote by either F r(M)|U or F r(U) the preimage of U under the
projection π : F r(M) → M . A diffeomorphism f : U1 → U2 between open
sets U1, U2 is called a local isometry of G if

G|F r(U1) ◦ f r = G|F r(U2).

The collection of all local isometries of G forms a pseudo-group, which
will be denoted Isoloc(M,G). This pseudo-group can be given the compact-
open topology, which is the topology generated by a base whose sets have
the form

N1(K,U) = {Φ ∈ Isoloc(M,G) | K ⊂ dom(Φ),Φ(K) ⊂ U}
N2(U,K) = {Φ ∈ Isoloc(M,G) | U ⊂ dom(Φ),K ⊂ Φ(U)}

where K ⊂M is compact, U ⊂M is open and dom(Φ) denotes the domain
of Φ. (We also use later Im(Φ) for the image set.) (See [18].)

We can also define a Ck-topology on any pseudo-group P of smooth local
diffeomorphisms as the compact-open topology of the prolongation Pk of P,
which is the pseudo-group of local diffeomorphisms of F r+k(M) of the form
Φk : F r+k(dom(Φ)) → F r+k(Im(Φ)).

A germ of isometry from x to y is an equivalence class of local isometries
sending x to y under the relation that identifies two local isometries if and
only if they coincide on some open set that contains x and is contained

14



in the intersection of their domains. The collection of germs of isometries
forms a groupoid, which will be denoted by Isogerm(M,G). It also has a
Ck-topology, defined as follows. Let P be any pseudo-group of smooth local
diffeomorphism of M and define the surjective map

E : {(x,Φ) ∈M × P | x ∈ dom(Φ)} → Pgerm

that evaluates the germ at x represented by Φ. Then Pgerm is given the
identification topology, whose open sets are U such that E−1(U) is open.

Finally, we define an infinitesimal isometry or order s from x to y as the
s-jet of a local diffeomorphism from a neighborhood of x to a neighborhood
of y, sending x to y, such that for each ξ ∈ F r+s(M) above x

Gs(f r+s(ξ)) = Gs(ξ).

The collection of infinitesimal isometries of order k forms a groupoid, de-
noted by Isok(M,G).

Let Ds(M) denote the space of s-jets of local diffeomorphisms of M .
Ds(M) is naturally identified with the quotient (F s(M)×F s(M))/Gs where
G acts on the product by (ξ1, ξ2)g = (ξ1g, ξ2g). The identification is achieved
by the map

(ξ1, ξ2)Gs 7→ js(ϕ2 ◦ ϕ−1
1 )0

where ξ1 = (jsϕ1)0 and ξ2 = (jsϕ2)0. This shows that Ds(M) is a smooth
manifold diffeomorphic to a locally trivial fibration over M ×M with fibers
diffeomorphic to Gs. The fiber above (x, y) will be denoted Ds(M)x,y and
comprises the s-jets (at x) of local diffeomorphisms of M sending x to y.
The natural projection p : F s(M)× F s(M) → Ds(M) is easily seen to be a
principal Gs-bundle.

The symbol Isogerm
x,y = Isogerm

x,y (M,G) stands for the germs of isometries
taking x to y. Isok

x,y ⊂ Dr+k(M)x,y is defined similarly. Notice that the
natural projections between jet spaces yield maps

Isoloc
x,y := {Φ ∈ Isoloc | x ∈ dom(Φ),Φ(x) = y} → Isogerm

x,y → Isok+1
x,y → Isok

x,y.

Isok(M,G) determines an equivalence relation on M by the condition

x ∼ y ⇔ Isok
x,y(M,G) 6= ∅.

The graph of this equivalence relation (a subset of M ×M) will be denoted
Rk.
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Since Gk : F r+k(M) → Jk
nV is a Gr+k-equivariant map, it gives rise to a

continuous map between the quotient spaces (with the quotient topology):

Ḡk : M = F r+k(M) → Jk
nV/G

r+k.

Notice that Ḡk is invariant under (local) isometries of G, that is Ḡk ◦ f = Ḡk

if f is an isometry.
The identification Ds(M) = (F s(M) × F s(M))/Gs is assumed in the

next proposition.

Proposition 3.1 Set s = r + k and suppose that G is a smooth geometric
structure over M of order r and type V . Then, Isok(M,G) is characterized
by

p−1(Isok(M,G)) = (Gk × Gk)−1(∆)

where ∆ is the diagonal in Jk
nV × Jk

nV . Furthermore, the orbits of the
Isok-equivalence relation are exactly the level sets of the function Ḡk, that
is

Isok
x,y(G,M) 6= ∅ ⇐⇒ Ḡk(x) = Ḡk(y).

Proof. This is a trivial consequence of the definitions. �

Killing fields. A smooth vector field X on M gives rise to a local flow
Φt on M , which in turn induces a local flow Φr

t on F r(M). The infinitesimal
generator of Φr

t is a vector field on F r(M) that commutes with the action
of Gr, since this is the case for the induced local flow. The resulting vector
field is a lifting of X to F r(M). It will be denoted by Xr. We say that X is
a Killing field for a geometric structure G if Φt is an isometry of G for each t.
This is equivalent to Xr(ξ) being in the kernel of dGξ for each ξ ∈ F r(M).

We can also define infinitesimal Killing fields of order i, as follows. First
observe that for each ξ ∈ F r+i(M) in the fiber of some x ∈ M there is a
canonical linear isomorphism between TξF

r+i(M) and the space of r-jets
of local vector fields on M around x. The latter space will be denoted by
Jr+i

x TM . In fact, let X be a vector field on M representing an element
of Jr+i

x TM . The vector Xr+i(ξ) ∈ TξF
r+i(M) can be shown to depend

only on jr+iXx. We say that α ∈ Jr+i
x TM is an infinitesimal Killing field

of order i of a geometric structure G or order r if, under the identification
TξF

r+i(M) ∼= Jr+i
x TM , we have dGξα = 0.

Complete parallelism. A simple, but for our purposes important, ex-
ample of geometric structure is a complete parallelism. Recall that this is
simply a section σ of F 1(M). In a local coordinate system of M with co-
ordinate vector fields Xi = ∂

∂xi one has σ(x) =
∑

ij θ(x)
i
jdu

j ⊗ Xi, where

16



Θ = (θi
j) is an invertible matrix and ui are the standard coordinates of Rn.

The inverse of Θ will be denoted Λ = (λi
j). The condition for a vector field

X to be a Killing field of σ amounts to LXσ = 0, where LX is the Lie deriva-
tive with respect to X. A simple calculation shows that if X =

∑
f iXi then

the functions f i must satisfy the system of differential equations:

∂fk

∂xl
=

∑
i

Ak
lif

i, Ak
li :=

∑
l

λs
l

∂θk
s

∂xi
.

If c(t) is a differentiable path contained in the coordinate neighborhood
of M on which the previous system of equations holds, c′(t) = vi(t)Xi is
its velocity vector field and hi(t) := f i(c(t)), then the hi satisfy along c the
equation:

dhk

dt
=

∑
i

Ak
i h

i, Ak
i :=

∑
l

Ak
liv

l

Using the uniqueness of solutions of ordinary differential equations we im-
mediately get the next proposition.

Proposition 3.2 Suppose that M is connected. If X,Y are Killing vector
fields of a (differentiable) complete parallelism of M such that X(x) = Y (x)
for some x ∈M , then X = Y .

For later use, we register here the following fact about Killing fields of a
real analytic parallelism. It is taken from [1].

Proposition 3.3 Let M be a connected, simply connected analytic mani-
fold and suppose that σ is a real analytic complete parallelism on M . Then
any locally defined Killing field of σ has a unique extension to a global
Killing field.

Proof. The uniqueness of the extension has already been shown. (In any
event, if any two analytic vector fields of a connected manifold agree on a
nonempty open set they must coincide everywhere.) By a standard argument
of analytic continuation, it suffices to prove that if ϕ : U0 → U is an analytic
parametrization of a coordinate neighborhood U of x ∈ M such that U0 is
a convex open subset of Rn, then any Killing field defined on a connected
nonempty open subset of U has a (unique) extension to U .

By transferring the problem to Rn via the parametrization ϕ, we may
assume that 0 ∈ V and U0 = U . For each x ∈ U define a curve cx : [0, 1] → U
by cx(t) = tx. The map U× [0, 1] → U defined by (x, t) 7→ cx(t) is, of course,
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analytic. It was seen earlier that the differential equation for components of
the Killing field along cx is

dhk

dt
=

∑
i

Ak
i h

i

where Ak
i := Ak

i (x, t) is an analytic function jointly on x and t. (A depends
on x due to the dependence of cx on x.) Therefore, we have a linear system
of differential equations depending analytically on a parameter x. A solution
Yx(t) = (w1

x(t), . . . , wn
x(t)) with initial condition hi(0) = vi, where vi is the

i-th component of X at 0, exists over the whole interval [0, 1]. The analytic
vector field Y (x) = Yx(1), x ∈ U , is the extension of X we seek. �

Cartan’s structures of finite type. Let G be an L-structure of order
r. Recall that it can be defined by a reduction P ⊂ F r(M), hence P is a
principal L-bundle. P is related to a sequence of structures of order 1

P → P−1 → · · · → P−r = M

where P−i is the projection of P into F r−i(M). By this remark, the study
of L-structures can be reduced to the study of L-structures of order 1. With
this in mind we assume in this subsection that π : P → M is a subbundle
of F 1(M).

Let θ be the canonical form on P . It is a one form on P taking values
in Rn defined, for each X ∈ TξP , by

θξ(X) := ξ−1dπξX.

(Recall that ξ ∈ F 1(M) is viewed as an isomorphism from Rn to TxM ,
x = π(ξ).)

Let l be the Lie algebra of L. Define a linear map ∂ : l ⊗ Rn∗ →
Rn ⊗ Λ2Rn∗ by

(∂f)(u1, u2) := −f(u2)u1 + f(u1)u2.

Define a Lie group L1, called the first prolongation of L, to be the subgroup
of linear transformations T of Rn ⊕ l such that TX = X for X ∈ l and,
for some h in the image of ∂, T (u) = u + h(·, u), u ∈ Rn. It can be shown
that L1 is (isomorphic to) a subgroup of N2 – the kernel of the projection
homomorphism from G2 onto G1 = GL(n,Rn).

Fix a linear subspace C of Rn ⊗ Λ2Rn∗ such that

Rn ⊗ Λ2Rn∗ = C ⊕ ∂(l⊗ Rn∗).
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We define a principal L1-bundle P1 over P as follows. P1 will be a L1-
reduction of F 1(P ), hence each element of P1 above ξ ∈ P is a linear frame
on TξP . A choice of a horizontal subspace H of TξP , that is, such that
θ|H : H → TxM is a linear isomorphism, specifies a frame on TξP . (The
frame ξ of TxM lifts to a frame on H and the tangent space at ξ to the
fiber above x has a frame induced by the principal action of L.) Define
c(ξ,H) ∈ Rn ⊗ Λ2Rn∗ as follows: if X1 and X2 are the unique elements of
H such that θ(Xi) = vi, for given v1, v2 ∈ Rn, then

c(ξ,H)(v1, v2) = dθ(X1, X2).

It is not hard to show (see [14]) that if H ′ is another horizontal subspace
at ξ, then c(ξ,H ′) − c(ξ,H) lies in the image of ∂. We can now define P1:
the elements of P1 that map to ξ ∈ P are those frames in F 1(P ) obtained
from a horizontal subspace H such that c(ξ,H) lies in C. (Therefore, the
definition depends on the choice of C.) It can be shown that P1 is, indeed,
a principal L1-bundle over P . (The reader is again referred to [14] for the
details.)

The k-th prolongation of P is defined inductively: Pk = (Pk−1)1. P is
said to be a structure of finite type (equal to k) if Lk is trivial for some k
(and Lk−1 is not). In this case, πk

k−1 : Pk → Pk−1 is an isomorphism of
principal bundles. It follows from the definition that if P is a structure of
finite type (k) then the k − 1-prolongation has a complete parallelism.

It also follows from the definition that if ϕ : M → M is an isometry
of P (so that ϕ1 : F 1(M) → F 1(M) restricts to an automorphism of P )
then ϕ1 induces in a canonical (and obvious) way an automorphism of Pi

for each i. With these remarks and the earlier discussion about Killing fields
of complete parallelism one obtains the next result from [1].

Theorem 3.4 (Amores) Let M be a connected simply connected analytic
manifold, and G an analytic L-structure on M of finite type. If U is an open
connected nonempty subset of M and X is a local Killing field of G defined
on U , then X has a unique extension to a (globally defined) Killing field
over M .

Proof. The missing details, which by now are not many, can be found in [1].
�

Examples of L-structures of finite type are: pseudo-Riemannian met-
rics, affine connections, projective structures, (pseudo-Riemannian) confor-
mal structures in dimension greater than 2.
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Proposition 3.5 Let G be an L-structure of finite type k. Then, for each
x ∈ M , the projection homomorphism Isok

x,x(M,G) → Isok−1
x,x (M,G) is in-

jective.

Proof. This is a straightforward consequence of the definitions. �

4 Rigid structures.

In [20], I. M. Singer asks the following question: How alike must two points
of a Riemannian manifold be in order to conclude that the manifold is ho-
mogeneous? For there to be a local isometry between neighborhoods of two
points of the manifold, the curvature and its covariant derivatives at the two
points must clearly be the same. The following converse is proved in [20]: if
the n-dimensional Riemannian manifold M is infinitesimally homogeneous,
that is, if the curvature and its k covariant derivatives (for k < n(n− 1)/2)
coincide at any two points then M is locally homogeneous, that is, there
is a local isometry between neighborhoods of any two points, and if M is
complete and simply connected then M is homogeneous.

A partial, but far reaching, generalization of Singer’s result is obtained
by M. Gromov in [10]. The result applies to a broad class of geometric struc-
tures and has been used in a number of investigations connecting geometry
and dynamics. (See [3] and [4] for a particularly striking example concerning
the classification of Anosov diffeomorphisms and flows.)

Gromov’s result applies to a large class of geometric structures that in-
cludes pseudo-Riemannian metrics, affine connections, and Cartan’s struc-
tures of finite type, which he calls rigid A-structures. It will be shown that
if M is a smooth manifold and G is a smooth rigid A-structure on M , then
there exists an open dense subset U ⊂M such that any “infinitesimal isom-
etry” (sufficiently close to the identity) at a point in U is the jet of a local
isometry.

Let G be a smooth geometric A-structure of order r on a manifold M .
Then G is said to be rigid (or r+i-rigid) if the homomorphism Isoi+1

x,x → Isoi
x,x

is injective for all x ∈M .
Here are some examples of rigid structures.
Immersions. A C1 0-order structure of type V is simply a C1 map G

from M into V . If G is 0-rigid, and f is local diffeomorphism of M fixing x
whose first jet at x is an infinitesimal isometry of order 1, then f must be
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the identity up to first jet. But f must satisfy

d(G ◦ f)x = dGx

so that G is 0-rigid if and only if G is an immersion.
Anosov map. This refers to example 12 of section 2. ϕ is an infinitesimal

isometry of G of order i exactly when it is the i+1-jet of some iterate of the
Anosov map f . In particular, it is 0-rigid.

L-structures of finite type. These are rigid, according to Proposition 3.5.
In particular, complete parallelisms, affine connections, pseudo-Riemannian
metrics are all examples of rigid structures. A direct proof that complete
parallelisms are rigid is rather easy. One can also show that an affine connec-
tion is rigid by noting that its horizontal distribution on F 1(M) determines
a parallelism on F 1(M). As for pseudo-Riemannian metrics, it suffices to re-
member that they produce a connection in a canonical way – the Levi-Civita
connection.

Pseudo-Riemannian conformal structures in dimension at least 3, projec-
tive structures, homogeneous structures of sufficiently high order, Itô vector
fields, are also rigid structures. On the other hand, k-plane distributions,
vector fields, symplectic forms, conformal structures in dimension 2 are not.

Proposition 4.1 If G is r + i-rigid then it is also r + i+ 1-rigid.

Proof. There is no loss of generality in setting i = 0. By choosing ξ in
F r+1(M) in the fiber above x ∈M , Iso1

x,x can be identified with the subgroup
I of Gr+1 consisting of all g such that g · v0 = v0, where v0 := G1(ξ). Let
N := N r+1 denote the kernel of the projection homomorphism from Gr+1

onto Gr. Then the structure is r-rigid if and only if I ∩ N is the trivial
group.

Fix ξ′ ∈ F r+2(M) projecting to ξ and let I ′ be the subgroup of Gr+2 that
corresponds to Iso2

x,x under the choice of ξ′. We also define the notations:
v′0 := G2(ξ′) and N ′ := N r+2. The claim amounts to proving that if I ∩N
is trivial then I ′ ∩N ′ is also trivial.

Before continuing, the following remarks will be needed. First, the action
of Gr+1 on J1

nV will be written as ρ(g, v) rather than simply as gv. Second,
we point out that if N is any manifold, then J1

nN is naturally identified with
the bundle Rn∗ ⊗ TN over N . Third, it is not difficult to show that, under
the homomorphism ir+1,1 : Gr+2 → G1 n J1

nG
r+1 described earlier in the

text, the subgroup N ′ maps into {e} × J1
nN , where e = e1 is the identity in

G1.
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Let g is a smooth map from a neighborhood of 0 ∈ Rn into N whose
differential dg0 describes g′ ∈ I ′, and let v be a smooth map from another
neighborhood of 0 into J1

nN such that dv0 corresponds to v′0, hence v(0) =
v0. The element g′ · v′0 then corresponds to the differential of ρ(g, v) at
0. The condition g′ · v′0 = v′0 corresponds to dρ(g, v)0 = dv0; in particular
g(0)·v0 = v0, so that g(0) is the identity e = er+1 ∈ N . With these notations
and remarks, we want to show that dg0u = 0 for each u ∈ Rn.

Write Xu := dg0u ∈ TeN . Then Xu is in the Lie algebra of N . We write
for each w ∈ J1

nV the vector X̄u(w) ∈ TvV given by

X̄u(w) :=
d

dt
|t=0ρ(exp (tXu), w).

X̄u is a smooth vector field on V , whose flow is Φt(w) = ρ(exp (tXu), w).
By the chain rule we obtain

dρ(g, v)0u = X̄u(v0) + dv0u.

But since dρ(g, v)0 = dv0, we conclude that X̄u(v0) = 0. As a consequence,
ρ(exp (tXu), v0) = v0 for all t. This means that exp (tXu) ∈ I ∩ N , hence
exp (tXu) is the identity element for each t. In particular, Xu = 0, which is
what we wanted to prove. �

Corollary 4.2 If G is a rigid A-structure on M , then for each x ∈M there
exists s1 = s1(x) such that Isos+1

x,x → Isos
x,x is an isomorphism for each

s ≥ s1.

Proof. The key point here is that, G being an A-structure, the groups Isok
x,x

are real algebraic groups. The corollary follows from the descending chain
condition applied to algebraic groups. �

Framed definition of rigidity. We have seen earlier that an L-
structure of finite type produces a frame field (a complete parallelism) on
Pk, for some k. The following alternative definition of rigid structures is
offered in [5]: a structure G is k-rigid if there exists a full frame field on
F k(M) obtained from G by a “canonical” procedure (so that an isometry of
G induces an isometry of the full-frame). It is claimed in [5] that “rigidity”
implies “framed rigidity.”

The Iso-relations for rigid structures. Here and in the next few
sections we study the general properties of the equivalence relation defined
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by Isoi and Isoloc. The main result is described in the next theorem. (This
is stated in a somewhat more restricted form than in [10]. See also [2].) The
theorem is Gromov’s partial generalization of Singer’s theorem. A detailed
proof will be given in the next section.

Theorem 4.3 (Gromov’s open-dense theorem) Let M be a smooth
manifold and G a smooth rigid A-structure on M of order r. Then, there
exists a positive integer s0 and for each s ≥ s0 there is an open subset
Ws ⊂M ×M such that the following holds:

1. The equivalence classes of the Isos-relation are closed smooth subman-
ifolds of Ws.

2. For each (x, y) ∈ Ws and each ξ ∈ Isos
x,y, there exists a unique (germ

of) a local isometry of G that sends x to y. Furthermore, the corre-
spondence from infinitesimal to local isometries is continuous.

3. The set Us of all x ∈M for which (x, y) ∈Ws for some y ∈M is open
dense, and the collection of y ∈ M such that (x, y) ∈ Ws, for each
x ∈ Us, is an open neighborhood of x.

Corollary 4.4 Under the assumptions of the previous theorem, and the
further assumption that Isos

x,y 6= ∅ for some big enough s and all x, y ∈M
(in other words, Isos is transitive for some big enough s), then every x ∈M
has a neighborhood Ux such that Isoloc

x,y is non-empty for all y ∈ Ux. In
particular, if the group of isometries of (M,G) has a dense orbit in M , then
(M,G) is locally homogeneous.

Proof. By “locally homogeneous” it is meant that Isoloc
x,y is non-empty for

all pairs x, y ∈ M . This is actually a corollary of the proof rather than the
theorem itself. It will be seen in the proof of the Theorem 4.3 that the set
Us is characterized by the property that, above Us, Gs and Ḡs have locally
constant rank. But the existence of an element in Isoi+1

x,y implies that the
rank of Gi is the same at ξ, η ∈ F r+i(M) for any ξ (respectively η) in the
fiber of x (respectively y). Similarly for Ḡi. �

It should be noticed that the condition that G be an A-structure is essen-
tial. In example 12 of section 2, G is rigid but not of algebraic type, and in
that case the orbits of the pseudo-group of local isometries are precisely the
orbits of the Z-action generated by the Anosov element, which are typically
dense but never open.
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Corollary 4.5 If G is a rigid A-structure on M , then Iso(M,G) is a Lie
group such that the natural action on M is smooth. The Lie algebra of
Iso(M,G) is the space of Killing fields.

Proof. Fix x ∈ Us (s ≥ s0, as in the theorem) and consider the smooth mani-
fold Is := Isos

x,Ux
comprised of the infinitesimal isometries of order s sending

x into Ux. This is homeomorphic to I loc := Isoloc
x,Ux

– the local isometries
sending x into Ux. On the other hand, a neighborhood of the identity in
Iso(M,G) (in the compact open topology) embeds into Isoloc

x,Ux
with locally

closed image. Therefore, Iso(M,G) has a manifold structure with dimension
no greater than the dimension of Is := Isos

x,Ux
. Similar neighborhoods of

points other than the identity are obtained by translation in Iso(M,G). The
second claim is clear. �

Integrating infinitesimal isometries of frame fields. We explain
in detail the process of integrating infinitesimal isometries for the special
case in which the geometric structure is a frame field. (Notice that a similar
result for Cartan structures of finite type are reduced to the case of frame
fields by an induction argument.)

Let X1, . . . , Xn be smooth vector fields on an n-dimensional manifold
M , everywhere linearly independent. The Xi determines a smooth frame
field on M . If f is a smooth local diffeomorphism of M , we say that f is an
infinitesimal isometry of order r of the frame field if

f∗Xi
r∼
x
Xi.

for each i, where (f∗X)x = dfxX(f−1(x)) represents the push-forward of a
vector field X.

The Lie brackets of X1, . . . , Xn can be expressed as

[Xi, Xj ] =
n∑

k=1

ckijXk

where the ckij are smooth real functions on M .
Let ϕt be denote the local flow of Xi and define

ϕx(t1, . . . , tn) := (ϕn
tn ◦ · · · ◦ ϕ

n
tn)(x).

An application of the inverse function theorem shows that ϕx is a local
parametrization of M near x, that is, there exists an open neighborhood
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Ux ⊂ Rn of 0 and Vx ⊂ M of x such that ϕx : Ux → Vx is a smooth
diffeomorphism that sends 0 to x.

For each x ∈M , denote by θx the smooth map from Ux into Rn3
defined

by
θx :=

(
ckij ◦ ϕx

)
.

The r-jet of θx at 0 is

Θr(x) := (jrθx)0 ∈ Jr(Rn,Rn3
)0.

Lemma 4.6 For each x and y in M , Θr(x) = Θr(y) if and only if Φ :=
ϕy ◦ (ϕx)−1 is an infinitesimal isometry of order r + 1 of the frame field
X1, . . . , Xn at x.

Proof. For each i, write

Φ∗Xi =:
n∑

j=1

hijXj

and introduce the matrix H = (hij). If ∂k denotes the kth coordinate vector
field of Rn, then the definition of ϕx implies (ϕx

∗∂k)x = Xk(x), so that H is
the identity matrix at y. We need to show that all the derivatives of H of
order up to r + 1 at y are 0.

Let Sx
i , i = 1, . . . , n, be an i-dimensional submanifold ofM diffeomorphic

under ϕx to a neighborhood of the origin in Ri. Hence, Si is comprised of
points of the form ϕx(t1, . . . , ti, 0, . . . , 0). On Sx

i , we have ϕx
∗∂k = Xk for

all k ≥ i. Therefore, Φ sends Xk onto itself along Sx
i , for each k ≥ i. This

means, in particular, that H(z) is the identity matrix for z ∈ Sy
1 , so that

all the derivatives of H along Sy
1 of order up to r + 1 are 0. Proceeding

by induction, suppose that all the derivatives of H along Sy
l−1 at y vanish,

l ≤ n. We want to show the same for the derivatives along Sy
l . It will suffice

for that to show that for each k, 1 ≤ k ≤ r + 1, the k-th order derivative,
(Xl)kH, with respect to Xl has r + 1 − k-jet along Sy

l−1 at y equal to 0.
(Note that it is possible to set a coordinate system for a neighborhood of y
in Sy

l so as to have Xl as one of the coordinate vector fields.)
Introduce the matrix C(k) := (c(k)

ij ), where c(k)
ij := cjki. It follows from

Φ∗[Xl, Xi] = [Φ∗Xl,Φ∗Xi] and from the fact that Φ∗Xl = Xl along Sy
l that

H satisfies on a neighborhood of y in Sy
l the equation

XlH = HC(l) − (C(l) ◦ Φ−1)H.

The condition Θr(x) = Θr(y) is equivalent to C(l) and C(l) ◦Φ−1 having the
same r-jet at y for each l. Therefore, XlH has along Sl−1 the same r-jet as
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the commutator [H,C(l)] := HC(l)−C(l)H, which vanishes at y up to order
r + 1 along Sl−1. Since

(Xl)kH =
k−1∑
j=0

bk−1
j [(Xl)jH, (Xl)k−1−jC(l)]

(where bk−1
j is the binomial coefficient) it follows by a second induction that

(Xl)kH vanishes along Sy
l−1 to order r − k at y, for each k, as claimed. �

Write E := E0 := M ×M and view E as a fibered manifold over M
with respect to the projection onto the first factor. Let Er be the space
of r-jets of (germs of) local sections of E. Then Er is a smooth fibered
manifold over Es, s ≤ r, and also over M with respect to the projection
onto the first factor. Note that Er can be identified with Jr(M,M). The
projection maps will be denoted by πr

s : Er → Es and πr : Er → M .
Each ξ = jr+1fx ∈ Er+1 corresponds to an n-dimensional subspace, L(ξ),
of Tξ̄E

r, ξ̄ = πr+1
r (ξ), n = dimM . L(ξ) is defined as the image of TxM

under the differential of y 7→ jrfy at x. We call L(ξ) the holonomic n-plane
associated to ξ. It is a horizontal subspace in the sense that it projects onto
TxM under dπr

ξ̄
. The correspondence ξ 7→ L(ξ) is smooth.

Define Φr(x, y) := jr(ϕy ◦ (ϕx)−1)x. (This should more properly be
defined as jr(id, ϕy ◦ (ϕx)−1)x, but we will continue to identify the section
of E with the map from M into itself defined by the section.) Then Φr(E)
is a smooth submanifold of Er diffeomorphic to E under πr

0. Also introduce
the set Ωr consisting of x ∈M such that the rank of dΘr

x is locally maximal.
Note that Ωr is an open dense subset of M and the kernel W r(x) of dΘr

x

has locally constant dimension on Ωr. Moreover, for each r and x ∈ M ,
W r+1(x) ⊂ W r(x) since Θr = π ◦ Θr+1, where π denotes the projection
from Jr+1(Rn,Rn3

) onto Jr(Rn,Rn3
). Set

Ω :=
2n+2⋂
r=0

Ωr.

Then, Ω is also open and dense. Moreover, for each x ∈ Ω, there exists an
r(x), 0 ≤ r(x) ≤ 2n and a neighborhood U of x such that

W r(x)(y) = W r(x)+1(y) = W r(x)+2(y)

and W r(x)(y) has constant dimension dr for y ∈ U .
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By the local form of constant rank maps, each x ∈ Ω has a neighborhood
B smoothly parametrized by a product T × P , where P and T are open
neighborhoods of 0 in Rdr

and Rn−dr
, respectively, such the plaques {t}×P ,

t ∈ T , correspond to the submanifolds of constant Θr in B. In other words,
B is a foliated box for a smooth foliation consisting of the level sets of Θr.
Note that, if r = r(x), we can find for each x ∈ Ω a common foliation box B
for both Θr and Θr+1 and the two foliations coincide in B. It also follows
that the set

Er
B := {(x, y) ∈ B ×B | Θr(x) = Θr(y)}

is a smooth embedded submanifold of B × B that maps onto B under the
projection (x, y) 7→ x and that Er

B coincides with Er+1
B for r = r(x). Intro-

duce a submanifold of Er+2 given by

Ir+2
B := Φr+2(Er

B)

which is diffeomorphic to Er
B under the projection πr

0. To keep the notation
uniform in what follows, we also introduce E−1

B := B × B, I1
B := Φ1(E−1

B ).
By the previous lemma, elements of Is+1

B are infinitesimal isometries of order
s of the frame field, for s ≥ 0.

Note that, if Er−2
B = Er−1

B = Er
B for some r ≥ 1 (this is the case if

r−2 = r(x)), then the following is a sequence of diffeomorphisms, the maps
being the natural jet projections:

Ir+2
B → Ir+1

B → Ir
B → Er

B.

We denote by ηr : Ir
B → Ir+1

B the inverse to the second map in the sequence.

Lemma 4.7 For each r and a ∈ Ir
B, the holonomic n-plane L(ηr(a)) is a

subspace of TaIr
B.

Proof. Since the problem is local, we may assume that M = Rn. An element
jr+1fx of Ir+1

B , y = f(x), is characterized by the property that the r-jets of
f∗Xi and of Xi at y coincide for each i. In other words,

Dα(f∗Xi −Xi)y = 0

for all α such that |α| ≤ r. A tangent vector in TaIr
B is a vector of the

form d
dt |t=0j

r(fx(t),y(t))x(t), where fx(t),y(t) is a one-parameter family of local
diffeomorphisms sending a differentiable curve x(t) ∈ M , x(0) = x, to y(t),
y(0) = y, such that jr(fx,y)x = a and

d

dt
|t=0D

α[(fx(t),y(t))∗Xi −Xi]y(t) = 0
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for all α, |α| ≤ r−1. By the chain rule, this is satisfied by jr(fx(t),y(t))x(t) :=
jrfx(t), where jr+1fx = η(a) and x(t) is any differentiable curve on M such
that x(0) = x and y(t) := f(x(t)). �

The previous discussion shows that the map ηr : Ir
B → Ir+1

B gives rise
to an n-plane distribution on Ir

B. It turns out that this distribution is invo-
lutive. Therefore, it corresponds to the tangent bundle of a local foliation
with leaves of dimension n, and each leaf is the r-jet of a local section of E,
hence a local isometry of the frame field. This is a consequence of a version
of the classical Frobenius theorem, which is formulated and proved in the
next section. The conclusion is the following:

Proposition 4.8 Let M be a smooth manifold and X1, . . . , Xn a smooth
frame field on M . Then there exists an open dense subset in M covered
by a collection of open sets Bα, α ∈ I, such that for each α and each pair
x, y ∈ Bα for which one can find an infinitesimal isometry (at x) of the
frame field, of order 2n+ 3, sending x to y, then there exists a unique local
isometry defined on a neighborhood of x whose 2n+ 4-jet at x is that given
by the infinitesimal isometry.

Analytic structures. We state here some special properties enjoyed by
analytic structures. For the proof of the next theorem, the reader is referred
to [10]. Notice that the second part of Theorem 4.9 is a generalization of
Theorem 3.4.

Theorem 4.9 (Gromov) Suppose that M is a connected analytic mani-
fold, and that G is an analytic rigid A-structure.

1. Let M be compact. Then, there exists an integer k and, for each
x ∈M , there exists a neighborhood Ux of x such that an infinitesimal
isometry of order k or greater, taking x into Ux, extends to a local
isometry (whose germ is uniquely determined).

2. If M is simply connected, then every local Killing field of G defined on
a connected nonempty open set extends uniquely to a global Killing
field.

Theorem 4.10 (Gromov) If G is a rigid analytic A-structure and M is
compact and simply connected, then Iso(M,G) has finitely many connected
components. The same holds for each isotropy subgroup Iso(M,G)x, x ∈M .
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5 Proof of Gromov’s open-dense theorem

The main purpose of this section is to provide a proof of Theorem 4.3.
The Frobenius theorem. Let π : E → M be a fibered manifold over

an n-dimensional manifold M . This means that π is a surjective submersion.
The set of all k-jets of (local) sections of E is also a fibered manifold over
M . It will be denoted by πk : JkE → M . If s : U → E is a section of
π (defined on some open set U), its k-jet jks is a section of JkE over U .
We identify J0E with E and denote by πk−1

k : JkE → Jk−1E the natural
projection. (See, for example, [9] for the general properties of JsE.)

A section σ : M → JsE (of class C l) is said to be holonomic if it
coincides with the s-jet of a (Cs+l) section of E. An n-dimensional subspace
of Tη(JsE) is said to be holonomic if it is tangent at η to a local holonomic
C1 section. Notice that such a subspace is transverse to the tangent space
of the fiber of JsE at η, hence it projects onto TxM , for x = πs(η).

Let ξ be a point of JkE and u a section of E over a neighborhood of
x = π(ξ) such that (jku)x = ξ. Let σ̄ denote the section jk−1u of Jk−1E over
that neighborhood. Notice that the differential dσ̄x : TxM → Tπk

k−1ξJ
k−1E

only depends on ξ, and not on the choice of the section u. We denote by L(ξ)
the image of TxM under dσ̄x. Therefore, L(ξ) is a holonomic n-dimensional
transverse subspace of Tπk

k−1ξJ
k−1E.

The bundle Jr+sE has a natural embedding into JrJsE given by:

(jr+su)x 7→ jr(jsu)x.

It follows from the definitions that if R is a submanifold of JsE such that
πs|R : R→M is also a fiber bundle, then

Jk(J lR) ∩ Jk+lJsE = Jk+lR.

A subset R of JsE will be called a partial differential relation (PDR)
of order s. (See [11].) The l-prolongation of R is the subset set of Js+lE
defined by

Rl = J lR∩ Jr+lE.

Isok as a PDR. We can view the set of infinitesimal isometries as a partial
differential relation, and a local isometry can be regarded as a solution of
that system. This is done as follows. Let M be a smooth n-dimensional
manifold and consider the trivial fiber bundle E = M ×M → M defined
by the projection on the first factor. A section, s(x) = (x, f(x)), of this
bundle is the graph of a map f : M → M . The partial differential relation
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R corresponding to Isok for some geometric structure on M of order r is
then the set of all (x, ξ) where ξ ∈ Isok

x,y, for some x, y ∈ M . In this way,
the set Rl corresponds to Isok+l.

We return now to a general E.

Lemma 5.1 Let R ⊂ JsE be a PDR and consider a given ξ ∈ R. Suppose
that there exists a neighborhood U ⊂ JsE of ξ and a smooth map F : U →
RN , having constant rank, such that R ∩ U = F−1(0). (In particular, R is
smooth near ξ.) If ξ′ ∈ R1 maps to ξ under the natural projection, then
L(ξ′) ⊂ TξR.

Proof. The condition ξ′ ∈ J1R means that ξ′ = j1ϕx, where ϕ is a local
section of R such that ϕ(x) = ξ. Therefore, F◦ϕ = 0, so that dFξ ◦dϕx = 0.
But L(ξ′) = dϕxTxM and TξR = kerdFξ, and the claim follows. �

We say thatR ⊂ JsE is Ck complete if the restriction toR of the natural
projection πs

s−1 from JsE to Js−1E is a Ck diffeomorphism from R onto its
image R0.

If the PDR consists of the infinitesimal isometries of order s = r+u, then
the condition that it be complete means that each infinitesimal isometry of
order r + u− 1 in the set R0 uniquely determines an infinitesimal isometry
of order r + u, and that the correspondence is a Ck function.

Suppose that R is Ck complete, and let h : R0 → R be the inverse map
to πs

s−1|R : R → R0. If η ∈ Js−1E and ξ ∈ JsE such that πs
s−1(ξ) = η,

then ξ determines a holonomic n-plane in TηJ
s−1E, which we denoted L(ξ).

Therefore, we obtain a Ck distribution of holonomic n-planes η 7→ ∆(η) :=
L(f(η)), η ∈ R0.

A partial differential relation R is said to be consistent if, for each ξ ∈ R
there exists a local section σ : U → JsE, U open in M , such that σ(x) ∈ R
for all x ∈ U , σ(x0) = ξ for some x0 ∈ U , σ is differentiable at x0 and

dσx0Tx0M = L(ξ′)

for some ξ′ ∈ Js+1E such that πs+1
s (ξ′) = ξ. In other words, for each ξ ∈ R

there exists a local section of JsE taking values in R, passing through ξ,
and tangent at ξ to a holonomic n-plane.

Lemma 5.2 If R is both Ck complete and consistent, the n-plane ∆(η) is,
for each η ∈ R0, tangent to R0. In particular, the projection

πs−1|R0 : R0 →M

is a submersion whose fibers are everywhere transverse to ∆.
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Proof. First notice that for each ξ′ ∈ Js+1E and ξ = πs+1
s (ξ′) ∈ JsE, it is

immediate from the definition of L that

(dπs
s−1)ξL(ξ′) = L(ξ).

Let σ be as in the definition of consistency and set σ0 := πs
s−1◦σ. Complete-

ness and the definition of ∆ imply that ∆ ◦ σ0 = L ◦ σ. Writing η = σ(x0),
ξ = σ(x), then ∆(η) = (dπs

s−1)ξL(ξ′) for each ξ′ that projects to ξ under
πs+1

s . On the other hand, by the definition of consistency again, there exists
ξ′ such that dσxTxM = L(ξ′), so that

∆(η) = (dπs
s1

)ξdσxTxM = d(πs
s−1 ◦ σ)xTxM = (dσ0)xTxM.

Since σ0 is a local section of R0, this proves the claim. �

For the next lemma we set X = Js−1E and π = πs−1.

Lemma 5.3 Let R0 be a submanifold of X|U , where U is an open subset
of M , and suppose that π|R0 : R0 → U is a (trivial) fiber bundle. Let ∆
be a C1 n-plane distribution in R0 and suppose that there exists a C1 map
h : R0 → J1X such that π1

0 ◦ h is the identity on R0 and

dhη∆(η) = L(ξ′)

for some ξ′ ∈ J2X such that π2
1(ξ

′) = h(η). Then ∆ is involutive.

Proof. First notice that h takes values in J1R0 since dhη∆(η) = L(ξ′)
implies that L(h(η)) = ∆(η). Furthermore, writing ∆(η) = duxTMx for a
local section u of R0 through η, we see that

L(ξ′) = dhη∆(η) = L(j1(h ◦ u)x)

so that ξ′ = j1(h ◦ u)x ∈ J1J1R0 ∩ J2X = J2R0. Therefore, there is no loss
of generality in assuming that R0 = X and that X = U × V , where U and
V are open subsets of Rn and Rq, respectively.

We choose coordinates (xi, uj) on X adapted to the product, where (xi)
are coordinates for the base U and (uj) are coordinates for the fiber V . To
obtain coordinates for the jet bundles J1X, J2X and J1J1X, first recall
that 1i stands for the multiindex vector of dimension n with entries 0 or 1,
with 0 at all but the i-th entry. The multiindex 1l + 1k is defined by vector
addition. If α = (α1, . . . , αn) is a multiindex vector, define

uj
α(jsσx) = Dα1

1 · · ·Dαn
n (uj ◦ σ)x
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where Di indicates the partial derivative in xi. This produces coordinates
(xi, uj , uj

1l
) on J1X and (xi, uj , uj

1l
, uj

1l+1k
) on J2X. For J1J1X we intro-

duce coordinates (xi, uj , uj
1l

; vj
1l
, vj

1l,1k
), where vj

1l
(j1σx) = Dl(uj ◦ σ)x and

vj
1l,1k

(j1σx) = Dk(u
j
1l
◦ σ)x. We point out that an element η ∈ J1J1X be-

longs to J2X if and only if vj
1l

(η) = uj
1l

(η) and vj
1k,1l

(η) is symmetric in l
and k.

The function h can now be written as

h(xi, uj) = (xi, uj , hj
l (x, u)).

The n-plane distribution ∆ is determined by h since ∆(η) = L(h(η)). The
lift of the coordinate vector fields ∂

∂xi to ∆ is

Xi :=
∂

∂xi
+

∑
m

hm
i (x, u)

∂

∂um
.

Then ∆ is the linear span of the Xi and their Lie bracket is easily calculated:

[Xi, Xj ] =
∑
m

(am
i,j − am

j,i)
∂

∂um

where

aj
l,k :=

∂hj
k

∂xl
+

∑
m

hm
l

hj
k

∂um
.

Therefore the lemma will follow once we prove that aj
l,k is symmetric in l

and k.
We can express the condition dhη∆(η) = L(ξ′) in the following way.

Suppose that u(x) = (x, f(x)) is a local section of X such that duxTxM =
∆(η). From

h(u(x)) = (xi, f j(x), hj
l (x, f(x)))

we obtain

j1(h ◦ u)x = (xi, f j(x), hj
l (x, f(x));

∂f j

∂xl
(x), Aj

l,k(x))

where

Aj
l,k(x) :=

∂hj
l

∂xk
(x, f(x)) +

∑
m

∂hj
l

∂um
(x, f(x))

∂fm

∂xk
(x).

But j1(h ◦ u)x = (j2v)x for some local section v of X, so that

hj
l (x, f(x)) =

∂f j

∂xl
(x) and Aj

l,k(x) = Aj
k,l(x).
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These two sets of equations imply that aj
l,k = aj

k,l, as claimed. �

Lemma 5.4 A section of JkE is holonomic if and only if it is everywhere
tangent to a holonomic n-plane

Proof. Since the problem is local we may assume that E = Rn × Rm.
A section of JkE is then given by x 7→ (x, {ηα(x)}α) such that for each
multiindex α = (α1, . . . , αn), with α1 + · · ·+ αn ≤ k, ηα is a function from
Rn into Rm.

The section η is holonomic exactly when ηα = Dα1
1 · · ·Dαn

n η0, for each
α, and it is tangent at every point to a holonomic n-plane if and only if, for
each multiindex β, β1+· · ·+βn ≤ k−1, and each i = 1, . . . , n, Diηβ = ηβ+1i

.
The claim follows from this remark by induction. �

Theorem 5.5 (Frobenius) Let R be a locally closed (that is, open in its
closure) Ck submanifold of JsE, k ≥ 1. Suppose that R is Ck complete and
consistent. Then, through each η ∈ R passes a local Ck solution of R. The
germ of solution at η is unique.

Proof. We already know that ∆ is involutive. The classical Frobenius the-
orem implies that through each η ∈ R0 passes a unique (germ of) integral
manifold of ∆. The restriction of πs−1 to that integral manifold is a submer-
sion, hence invertible near η by the inverse function theorem. Therefore, we
obtain a local section σ0 of Js−1E that passes through η and is everywhere
tangent to ∆. Since ∆ is a distribution of holonomic planes, the previous
lemma implies that the section is also holonomic. �

Orbits of the Isoi-relations. A key remark made earlier about the
orbits of the Isoi-relations is that these orbits coincide with the level sets of
the quotient map

Ḡi : M → J i
nV/G

r+i.

(See Proposition 3.1.) If J i
nV/G

r+i were a manifold, Ḡi would be a smooth
map, there would be an open and dense subset of M on which Ḡi would
have locally constant rank, and in that open set the level sets of Ḡi would
comprise a smooth foliation by closed submanifolds.

Although J i
nV/G

r+i may fail to be a manifold, Rosenlicht’s Theorem
10.2 (appendix C) will imply that these remarks still hold on an open dense
subset of M .
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Lemma 5.6 Let G be a smooth A-structure on M of order r. Then for
each i ≥ 0 there exists an open dense subset Ui ⊂M on which Ḡi is smooth
and such that:

1. For each x ∈ Ui there exists (i) a neighborhood Ux ⊂ Ui of x and (ii)
a smooth submanifold W ⊂ J i

nV whose image W̄ in J i
nV/G

r+i carries
a smooth manifold structure such that Ḡi|Ux : Ux → W̄ is a smooth
map.

2. Ḡi has locally constant rank on Ui.

3. Gi has locally constant rank on F r+i(M)|Ui .

Proof. There is no loss of generality in assuming that i = 0 and J i
nV = V .

By Rosenlicht’s theorem there exists a finite partition of V into Gr-invariant
real varieties V = V0 ∪ V1 ∪ · · · ∪ Vl such that, for each 0 ≤ i ≤ l the union
Vi ∪ · · · ∪ Vl is Zariski closed in V , Vi is a Zariski open subset of Vi ∪ · · · ∪ Vl

and Vi → Vi/H is a smooth fibration. Let i be the first index for which Vi

intersects nontrivially the image of G. Then G−1(Vi) is a non-empty open
subset of F r(M). It is also Gr-invariant since G is Gr-equivariant, so that
there exists U ⊂ M such that G−1(Vi) = π−1(U), where π : F r(M) → M
is the natural projection. But now the quotient map Ḡ restricted to U is a
smooth map into the smooth manifold Vi/H. If U is not already dense, we
can apply the same argument to G restricted to the open subset of F r(M)
that projects to the interior of the complement of U . After a finite iteration
of this procedure we obtain an open dense subset of M , still denoted U , on
which Ḡ is smooth.

U contains an open and dense subset U ′ in which the rank of Ḡ is lo-
cally maximal, hence locally constant. By the equivariance of G there is
another open dense subset U ′′ ⊂ M such that G has locally constant rank
on F r(M)|U ′′ . The intersection U ′ ∩ U ′′ is the desired open dense set. �

Define Ĩi = p−1(Isoi), where p : F r+i(M)× F r+i(M) → Dr+i(M) is the
projection and Dr+i(M) = (F r+i(M)×F r+i(M))/Gr+i (cf. paragraph right
before Proposition 3.1). If ∆ is the diagonal in J i

nV , then (Gi × Gi)−1(∆)
contains the diagonal in Ui × Ui. On the other hand, for each ξ ∈ Ui,
(ξ, ξ) has a neighborhood in Ui × Ui on which Gi × Gi has constant rank.
Therefore, on that neighborhood Ĩi is a smooth closed submanifold. Since
Ĩi is saturated by the orbits of p, we also have that Isoi is smooth on a
neighborhood of jr+kidx (the r + k-jet of the identity) at x ∈ Ūi.

Let R̄i be the graph of the Isoi-relation in M , so that Ĩi is mapped onto
R̄i under the natural projection from F r+i(M)× F r+i(M) → M ×M . By
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the same argument used for Ĩi we conclude that R̄i is a smooth submanifold
on a neighborhood of (x, x) in Ūi × Ūi.

Lemma 5.7 Let x ∈ Ui. Then on a neighborhood of jr+iidx in Dr+i(M)
the projection Isoi → R̄i is a submersion.

Proof. It suffices to show that the linear projection T(ξ,ξ)Ĩ
i → T(x,x)R̄i is

surjective, for each ξ ∈ Ui. This in turn is equivalent to the kernel of dGi
ξ

in TξF
r+i(M) mapping onto the kernel of dḠi

x in TxM . Let x be the base
point of ξ and denote by ξ · Gr+i the fiber of x in F r+i(M). Similarly, let
Gr+i · Gi(ξ) denote the orbit of Gi(ξ) in J i

nV . By the equivariance of Gi we
have

dGi
ξTξ(ξ ·Gr+i) = TGi(ξ)(G

r+i · Gi(ξ)).

Let v ∈ TxM lie in the kernel of dḠi
x and choose any w ∈ TξF

r+i(M)
that projects onto v. The vector dGi

ξw ∈ TGi(ξ)J
i
nV lies in the kernel of

the projection TGi(ξ) → TḠi(x)(J
i
nV )/Gr+i, hence dGi

ξw = dGi
ξw

′ for some
w′ ∈ Tξ(ξ · Gr+i). But z = w − w′ still maps to v under the projection
TξF

r+i(M) → TxM , and is moreover in the kernel of dGi
ξ. �

Lemma 5.8 Let G be a smooth rigid geometric A-structure of order r and
type V on a smooth manifold M . Then there exists a positive integer s, an
open dense U ⊂ M and, for each x ∈ U , a neighborhood Ux of x such that
each element of Isoi(M,G)x,y, for i ≥ s, x ∈ U , and y ∈ Ux, is the r + i-jet
at x of an element of Isoloc(M,G) sending x to y, whose germ is uniquely
determined by its r+ i-jet. Furthermore, the correspondence is continuous.

Proof. The definition of rigid structure implies that the dimensions of the
manifolds Isos stabilize after some s0. That means that the projection
Isos+1 → Isos (over the open sets described above) can be inverted. This
is what is needed to apply the version of the Frobenius theorem discussed
earlier. �

Theorem 4.3 is now a consequence of the previous lemmas.

6 Geometry and Dynamics

This section discusses some aspects of the interaction between a geometric
structure and the dynamics of its group of isometries. The main results of
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the section are due to R. Zimmer. (See, for example, [23]) We will make
use of basic results in the theory of dynamical systems as well general facts
concerning algebraic actions and semisimple groups. Appendices A, B, and
C provide the necessary background.

The first remark is that a geometric structure G whose isometry group
acts topologically transitively on M (that is, has a dense orbit) must be
“essentially” an L-structure. This is due to the next proposition.

Proposition 6.1 Let V be a real algebraic H-space and P a principal H-
bundle over a manifold M . Let G : P → V be a Cr, r ≥ 0, H-equivariant
map and suppose that a group G of automorphisms of P acts topologically
transitively on M . Suppose moreover that G is G-invariant. Then, there
exists an open and dense G-invariant subset U of M such that G maps P |U
onto a single H-orbit, H · v0 ⊂ V , for some v0 ∈ V . The set G−1(v0) ⊂ P is
a Cr G-invariant L-reduction of P , where L ⊂ H is the isotropy subgroup
of v0. If H · v0 is a closed subset of V , then U = M .

Proof. Suppose that x0 ∈ M has a dense G-orbit in M and let ξ0 ∈ Px be
any point in the fiber of P above x0. Set v0 = G(ξ0) and denote by W the
closure of the H-orbit of v0 in V . Since the G-orbit of x0 is dense in M , the
G×H-orbit of ξ0 is also dense in P , and maps into H ·v0. Therefore G maps
P into W . By the general properties of algebraic actions (see appendix C)
H · v0 is open in W , so G−1(H · v0) is an open and dense subset of P . This
set is saturated by H-orbits since G is H-equivariant, hence it is of the form
P |U for some open and dense subset U ⊂ M . Moreover, U is G-invariant
since G is itself G-invariant. If H ·v0 is closed in V , then W = H ·v0, so that
U = M . Once we know that G maps into a single H-orbit, the remaining
claims follow. �

The same ideas also prove the measurable counterpart of the previous
proposition. (This is a version of the cocycle reduction lemma of [22].)

Proposition 6.2 Let V be a real algebraic H-space and P a measurable
principal H-bundle over a second countable metrizable space M . Let G :
P → V be a measurable H-equivariant map and suppose that a group
G of automorphisms of P acts ergodically on M with respect to a quasi-
invariant measure µ, and leaves G invariant. Then, there exists a G-invariant
measurable conull subset U of M such that G maps P |U into a single H-orbit
H · v0 in V . The pre-image of v0 under G defines a measurable, G-invariant
L-reduction of P |U .

36



Proof. H-equivariance of G implies that G induces a G-invariant measurable
map G : M → V/H. The H-action on V is tame, since it is an algebraic
action. It follows that G is constant a.e.; therefore G sends a G-invariant set
P |U , µ(M − U) = 0, into a single orbit in V . �

Corollary 6.3 Let G : F r(M) → V be a continuous geometric structure on
M and suppose that Iso(M,G) has a dense orbit in M . Then, over an open
dense Iso(M,G)-invariant subset U ⊂ M , G is an L-reduction. A similar
result holds in the measurable case.

The algebraic hull. Suppose that a group G acts by automorphisms
of a principal H-bundle P and that the G-action on the base M preserves a
measure class represented by a probability measure µ. We say that Q ⊂ P is
a G-invariant measurable L-reduction of P if Q is a measurable L-reduction
of P |U , for some G-invariant, µ-conull, measurable subset U ⊂ M and the
G-action on P restricts to a G-action on Q.

Proposition 6.4 (Zimmer) Let M be a second countable metrizable G-
space with a quasi-invariant probability measure µ. Suppose that the action
is ergodic with respect to µ. Let H be a real algebraic group and let P be a
measurable principal H-bundle on which G acts by bundle automorphisms
over the G-action on M . Then:

1. There exists a real algebraic subgroup L ⊂ H and a G-invariant mea-
surable L-reduction Q ⊂ P such that Q is minimal; i.e., Q does not
admit a measurable G-invariant L′-reduction for a proper real alge-
braic subgroup L′ of L.

2. If Q1 and Q2 are G-invariant reductions with groups L1 and L2 resp.,
satisfying the above minimality property, then there is an h ∈ H such
that L′ = hLh−1 and Q2 = Q1h

−1.

3. Any G-invariant measurable L′-reduction of P , for real algebraic L′,
contains a G-invariant measurable L′′-reduction, where L′′ is a conju-
gate in H of the minimal L obtained in item 1.

Proof. Let Q1 ⊃ Q2 ⊃ · · · be a nested sequence of invariant reductions
with groups L1 ⊃ L2 ⊃ · · · . The groups Li form a descending chain of
real algebraic groups. By the descending chain condition the sequence must
stabilize at a finite level, so that a minimal reduction must exist.
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The uniqueness claimed in item 2 can be seen as follows. A G-invariant
Li-reduction, Qi, yields a G-invariant H-equivariant map

Gi : P → H/Li.

Taking the product G1 × G2, we obtain a G-invariant, H-equivariant map

G : P → H/L1 ×H/L2.

The right-hand side is an H-space for the natural product action. Applying
the measurable reduction lemma to G, we conclude that G maps P |U onto a
single H-orbit in H/L1×H/L2, where U is a conull subset of M . We denote
that orbit by H · (h1L1, h2L2). The isotropy group of (h1L1, h2L2) is

L = {h ∈ H | hh1L1 = h1L1, hh2L2 = h2L2}

and we have a G-invariant measurable L-reduction Q of P . Notice that
L ⊂ h1L1h

−1
1 ∩ h2L2h

−1
2 . L cannot be a proper subgroup of hiLih

−1
i since,

otherwise, Qhi would define a proper reduction of Qi, contradicting the min-
imality of Qi. Therefore, Qhi = Qi, i = 1, 2, proving 2. Notice that the
same argument also shows 3. �

We give next the Cr counterpart of the previous result.

Proposition 6.5 Let P be a principal H-bundle over a manifold M . Sup-
pose that a group G acts by bundle automorphisms of P so that the action
on M is topologically transitive. Then, for each r ≥ 0, there exists a real
algebraic subgroup L ⊂ H and a G-invariant Cr L-reduction Q ⊂ P |U , over
a G-invariant dense open subset U ⊂M , such that Q is minimal in the same
sense already defined in the previous proposition. Moreover, the conclusions
2 and 3 of Proposition 6.4 also hold here after replacing “measurable” by
“Cr” and taking into account that all reductions are only defined over a
G-invariant open and dense subset of M .

Proof. This is shown following the same lines of the previous proof, using
the Cr form of the reduction lemma. �

The conjugacy class of the group L obtained above is called the Cr (resp.,
the measurable) algebraic hull of the G-action on P . By abuse of language,
we sometimes call L itself the algebraic hull. If the action is not ergodic, we
should regard the algebraic hull as a map from the ergodic components of
a quasi-invariant measure into the conjugacy classes of algebraic subgroups
of P .
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If G is a Lie group that acts via a smooth action on a manifold M ,
then G also acts on each of the frame bundles F r(M). An interpretation
of Propositions 6.4 and 6.5 is that it is possible to define a “maximal A-
structure” of order r that is invariant under G and is, in a sense, unique.

The interest in understanding the algebraic hull of a G-action begins to
be justified by the next proposition. It says, in part, that the algebraic hull
of the action sets a “lower bound” on the size of the groups Isoi

x,x(M,G) for
any A-structure G invariant under the action and almost all x ∈M .

Proposition 6.6 Let G be a Lie group that acts smoothly on a manifold
M so as to preserve a geometric A-structure of order r. Let Li ⊂ Gr+i be
(a representative) of the measurable algebraic hull of the G-action (by auto-
morphisms on F r+i(M)) with respect to an ergodic quasi-invariant measure
on M . Then for almost all x ∈ M , and each i ≥ 0, the group Isoi

x,x(M,G)
contains a subgroup isomorphic to Li.

Proof. Recall that each Gi is an equivariant map from F r+i(M) into some
algebraic variety V i upon which Gr+i acts algebraically. By Proposition
6.2, over a set of full measure in M , G takes values into a single Gr+i-orbit
Gr+i ·v0 in V i. Therefore, Gi can be described as an Lv0-structure, where Lv0

is the isotropy subgroup of v0 in Gr+i. Recall that an element of Isoi
x,x(M,G)

can be described as a pair (ξ, η) (modulo Gr+i), where ξ, η lie in the fiber of
F r+i(M) above x and Gi(ξ) = Gi(η). It follows that Isoi

x,x(M,G) is isomor-
phic to Lv0 . On the other hand, the algebraic hull Li is contained in Lv0 ,
by Proposition 6.12. �

Corollary 6.7 Suppose that G is an analytic rigid A-structure. For i suffi-
ciently large Isoloc

x,x(M,G) contains a group isomorphic to Li for each x ∈M .
Furthermore, for each x ∈M and each x′ in the universal covering M̃ in the
fiber of x, the space of (globally defined) Killing vector fields on M̃ (of the
lift of G to M̃) vanishing at x′ contains a Lie algebra isomorphic to the Lie
algebra of Li.

Proof. The first assertion follows from Theorem 4.9(1). The fact about
Killing fields is a consequence of 4.9(2). �

We give next a few applications of the dynamical ideas discussed so far,
for actions of semisimple Lie groups .
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Lemma 6.8 Let M be a G-space with an ergodic G-invariant probability
measure µ. Let ρ : G → GL(V ) be a representation of G on the finite
dimensional (real) vector space V . Denote by H the Zariski closure of ρ(G)
in GL(V ) and suppose that ρ(G) is a subgroup of finite index in H. We
assume moreover that H is generated by algebraic 1-parameter subgroups.
Then H is the algebraic hull of the G-action by bundle automorphisms of
the (trivial) principal H-bundle P = M ×H given by g(x, h) := (gx, ρ(g)h).

Proof. Let L ⊂ H denote the algebraic hull and let Q be a G-invariant
measurable L-reduction of P . The reduction is, in effect, a G-invariant
measurable assignment of an L-orbit (for the right-translation L-action on
H) at each x ∈M , i.e., a G-invariant measurable section of the fiber bundle
P/L, whose standard fiber is H/L. In the present situation, where P is
already a product, having an L-reduction is equivalent to having a measur-
able map φ : M → H/L such that for each x ∈M , g(x, φ(x)) = (gx, φ(gx)).
Therefore, φ has the property

φ(gx) = ρ(g)φ(x)

for all g ∈ G and all x ∈M . The probability measure φ∗µ on H/L is ρ(G)-
invariant since φ∗µ = φ∗g∗µ = ρ(g)∗φ∗µ, for each g ∈ G. By averaging φ∗µ
over the finite group H/ρ(G) we obtain an H-invariant probability measure
on H/L. We can now apply Corollary 10.5 (appendix C) to conclude that
H = L. �

The next corollary and lemma are from [24].

Corollary 6.9 Let G be a noncompact connected simple Lie group and let
M be a G-space with an ergodic G-invariant probability measure µ. Denote
by H the Zariski closure of Ad(G) in GL(g). Then H is the algebraic hull of
the G-action by bundle automorphisms on the (trivial) principal H-bundle
P = M ×H by g(x, h) := (gx,Ad(g)h).

Lemma 6.10 Let G be a noncompact connected simple Lie group that acts
on a connected manifold M with a finite G-invariant measure positive on
open sets. Denote by Gx the isotropy subgroup of x ∈ M . Then, if the
action is not trivial, there exists an open dense set of full measure on which
Gx is discrete.

Proof. All that will be needed for the next theorem is that for each ergodic
component of the measure either Gx = G at almost every x ∈ M or Gx
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is discrete at almost every x. We first check this claim. Let gx be the Lie
algebra of Gx and Gr(g) the union of the Grassmann varieties of subspaces
of g. Define φ : M → Gr(g) by φ(x) = gx. Then φ is easily seen to be
measurable and for each g ∈ G and x ∈M

φ(gx) = Ad(g)φ(x).

If µ is the G-invariant probability measure on M , φ∗µ is an Ad(G)-invariant
probability measure on Gr(g). Since Ad(G) is a finite index subgroup of its
Zariski closure H in GL(g), we obtain, as in the proof of the previous lemma,
an H-invariant probability measure on Gr(g). That invariant measure must
be supported on the set of H-fixed points (Corollary 10.5, appendix C), so
that over a set of full measure in M , the map φ takes values in the set of
H-fixed points. In particular, there is a conull G-invariant subset S ⊂ M
such that φ|S is a G-invariant function. By ergodicity, φ is constant almost
everywhere. Call l the constant value of φ. Then l = Ad(g)l for all g ∈ G,
hence l is an ideal of g. But the only ideals of g are g and 0, so that Gx is
either G or a discrete subgroup at almost every x.

We now drop the assumption that the measure is ergodic, and suppose
that it is positive on open sets. Let Λ ⊂M be the (measurable) subset where
Gx = G. We want so show that Λ has measure 0. Suppose for a contradic-
tion that this is not the case and let K be the maximal compact subgroup
of G. subgroup of G. The action of K can be linearized at each of its fixed
points. (Choose a K-invariant Riemannian metric on M and consider a
normal neighborhood near the point. Then in exponential coordinates the
local action will be linear.) Therefore, each density point of Λ has a neigh-
borhood where K acts trivially. It is clear that if x is in the closure of an
open set where K is trivial, then x is fixed by K and has a neighborhood
of fixed points. (Again by linearization.) Therefore, K acts trivially on all
of M . On the other hand, the subgroup of G that acts trivially on M is
a normal subgroup. Since G is simple we obtain the desired contradiction. �

Theorem 6.11 (Zimmer) Let G be a connected, noncompact, simple Lie
group, acting nontrivially on a compact n-dimensional manifoldM . Suppose
that the action preserves an H-structure on M where H is a real algebraic
subgroup of GL(n,R) consisting of matrices of determinant ±1. Then there
is a Lie algebra embedding π : g → h such that the representation π of g on
Rn contains ad(g) as a subrepresentation.

Proof. We have pointed out before that if an action preserves an H-structure
on M such that H consists of matrices of determinant 1, then it also pre-
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serves a nonvanishing alternating n-form on M . Similarly, if we allow the
elements of H to have determinant either 1 or −1, then the action preserves
a nonvanishing n-form which is only well-defined up to sign, i.e. a volume
density. This nevertheless allows us to define a smooth G-invariant measure
on M . The total measure of M is finite since M is compact, so after normal-
ization we may assume that M admits a G-invariant probability measure µ
whose support is the entire M .

For each ergodic component of µ we can apply Lemma 6.8 and conclude
that Gx is either discrete or equal to G for µ-a.e. x ∈ M . If Gx = G
for µ-a.e. x, we have by continuity that the action is trivial, contrary to
the hypothesis. Therefore, there must be a G-invariant measurable subset
S ⊂M of positive µ-measure such that Gx is discrete for all x ∈ S.

At each x ∈ S, the differential of the orbit map τx : G→M , τx(g) := gx,
yields an identification of the tangent space at x of the G-orbit of x with
the Lie algebra of G, as indicated by the following arrow.

Fx := (Dτx)e : g
∼=−−−−→ Vx := Tx(G · x)

Moreover, with respect to this identification, the derivative action of each
g ∈ G on the G-invariant subbundle V of TM with fibers Vx is given by
Ad(g), i.e. Dgx : Vx → Vgx and

Fgx ◦Ad(g) = Dgx ◦ Fx.

Let m be the dimension of g and view g as the subspace Rm ⊂ Rn,
corresponding to setting equal to 0 the last n −m coordinates of Rn. Let
H1 denote the image of G in GL(m,R) under the adjoint representation.
Then by the above discussion, we obtain over S a measurable H-reduction
of the frame bundle F (M)|S where H1 is a subgroup of GL(n,m,R) that
restricts to H on the invariant subspace Rn. We can now apply Corollary
6.9 to conclude that the algebraic hull of the action contains Ad(G). But
some conjugate of the algebraic hull is contained in H. Since the Lie algebra
of Ad(G) is isomorphic to g, we obtain that some conjugate of g is a Lie
subalgebra of h. �

It can also be shown (see [24]) that if g is the Lie algebra of a noncompact
simple Lie group and π : g → gl(V ) is a Lie algebra homomorphism such
that on V there is a nondegenerate symmetric bilinear form of signature
(1,dimV − 1), invariant under π(g), and ad(g) is a subrepresentation of
π, then g = sl(2,R). Therefore, by the previous theorem, if a connected
noncompact simple Lie group G acts nontrivially on a compact manifold
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preserving a Lorentz metric (i.e., a pseudo-Riemannian metric of signature
(1,dimV − 1)), then G is locally isomorphic to SL(2,R).

We say that a geometric structure is unimodular if it determines an L-
reduction of F 1(M) where L is the group of matrices with determinant 1 or
−1. In other words, the structure is unimodular if it incorporates a volume
density.

Proposition 6.12 Suppose that G is a noncompact simple Lie group with
finite center acting nontrivially on a compact manifold M so as to preserve
a unimodular A-structure G. Then, for almost all x ∈M and each i ≥ 1, the
algebraic hull Li (and, therefore, also Isoi

x,x(M,G)) contains a group locally
isomorphic to G.

Proof. This is a consequence of (the proof of) Theorem 6.11 together with
Corollary 6.7. �

Corollary 6.13 For i sufficiently large and almost all x ∈M , Isoloc
x,x(M,G)

contains a group locally isomorphic to G.

Proof. This is due to the proposition and Theorem 4.9(1). �

7 Rigid structures and the topology of M

In all of the section, M will be a compact real analytic manifold, equipped
with a real analytic, rigid, unimodular A-structure G. G will denote a con-
nected noncompact simple Lie group with finite center that acts analytically
by isometries of G. The action in assumed to be nontrivial.

Theorem 7.1 (Gromov) Under the assumptions of the previous para-
graph, there exists an integerm and a representation ρ : π1(M) → GL(m,R)
such that the Zariski closure of the image of ρ contains a group locally iso-
morphic to G.

In particular, SL(2,R), for example, cannot act nontrivially on a sphere
Sn so as to preserve the volume form and an analytic connection. More
generally,

Corollary 7.2 G cannot act analytically and nontrivially on a compact
manifold M with amenable fundamental group leaving invariant an analytic
rigid A-structure.
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Proof. This is due to the fact that the Zariski closure of an amenable group
is amenable. See Theorem 4.1.15 in [22]. �

The above theorem, used in combination with Zimmer’s cocycle super-
rigidity theorem and Ratner’s solution of Raghunathan’s conjecture was used
by Zimmer and Zimmer-Lubotzky [17] to obtain detailed information about
the fundamental groups of manifolds supporting actions by (higher rank)
semisimple Lie groups. As an illustration, we state without proof (part of)
a theorem given in [25]. The reader will find the complete statement and
further applications also in [23].

Theorem 7.3 (Zimmer) Assume that G has finite fundamental group,
its R-rank is at least 2, and π1(M) admits a faithful linear representation
σ : π1(M) → GL(q,C), for some q, such that σ(π1(M)) is discrete. Then,
if G acts on M as in Theorem 7.1, π1(M) contains a lattice in a linear Lie
group L, where L contains a group locally isomorphic to G.

The remainder of the section is dedicated to proving Theorem 7.1.
Let g be the Lie algebra of G. Since G acts isometrically on M , g can

be identified with a Lie algebra of Killing fields on the universal covering
M̃ . Let s be large enough so that the conclusion of Theorem 4.3 holds. For
almost all x ∈ M , let L = L(x) be the algebraic hull at x of the action on
F r+s(M). Let x′ ∈ M̃ be in the fiber of x and denote by l the Lie algebra
of (global) Killing fields on M̃ that vanish at x′ and is isomorphic to the Lie
algebra of L. (Cf. Corollary 6.7.)

Lemma 7.4 The Lie algebra l normalizes g, so that the Lie algebra ho-
momorphism X 7→ [X, ·] from l into the algebra of derivations of g is onto
ad(g).

Proof. Let Jr+sTM denote the vector bundle of r + s-jets of local vector
fields on M . Denote by ḡ(x) the subspace of the fiber of Jr+sTM at x
consisting of the k + s-jets of Killing fields induced from elements of g by
the action. According to Lemma 6.8, ḡ(x) is isomorphic to g for almost all x.
Call the natural isomorphism ϕx : g → ḡ(x). It is clear that gḡ(x) = ḡ(gx)
for each g ∈ G and almost all x and that

gϕx(X) = ϕgx(Ad(g)X).

(Ad : G → GL(g) is the adjoint representation of G.) In particular, by
the general properties of the algebraic hull, L may be chosen so that it also
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preserves the (measurable) subbundle x 7→ g(x). Arguing as in the proof of
Theorem 6.11 (see also Corollary 6.9) we obtain that the connected compo-
nent L0 of L acts on ḡ(x) ∼= g by Ad(G). Since Killing fields are uniquely
determined by their r + s-jets, g is normalized by L0, hence also by the Lie
algebra l. Furthermore l acts on g by the adjoint representation. �

Corollary 7.5 Let g be the Lie algebra of G, viewed as the algebra of
Killing fields on M̃ . Let z be the centralizer of g in the Lie algebra of all
Killing fields on M̃ . For each x ∈ M̃ , let z(x) and g(x) be the respective
images under the evaluation map at x. Then, g(x) is contained in z(x) for
almost all x.

Proof. Let x ∈ M̃ be any point for which Lemma 6.10 holds. If g ∈ G is
sufficiently close to the identity, it is possible to choose u ∈ L = L(x), also
close to the identity, such that u acts on g by Ad(g)−1. The composition
g ◦ u is a local diffeomorphism near x that acts trivially on g (recall that
we can identify ḡ(x) with g as in the proof of Lemma 6.10) and sends x to
gx. Let Z be the local group near x with Lie algebra z. Then, we have just
shown that in the G-orbit of x there is an open neighborhood of x that also
lies in the local Z-orbit of x. It follows that g(x) ⊂ z(x), as claimed. �

The following remark may help put the last result in perspective. Sup-
pose that G is a subgroup of a simply connected Lie group H, acting on
M = H/Γ by left translations, where Γ is a discrete subgroup of H. On the
universal covering H of M there is also a right action of G, which commutes
with the left action. The corresponding vector fields are the elements of z

constructed above. The geometric structure in this case can be taken to be
an invariant affine connection on H/Γ.

We now conclude the proof of Theorem 7.1. There is no loss of generality
in supposing that that G is simply connected, so that we can lift the G-action
on M to a global action of G on M̃ . Let z be as in Corollary 7.5. Notice
that z is invariant under π1(M). In fact, if γ ∈ π1(M), X ∈ z and Y ∈ g,
then γ∗Y = Y (since Y is the lift of a vector field on M) and

[γ∗X,Y ] = [γ∗X, γ∗Y ] = γ∗[X,Y ] = 0

so that γ∗X is also in z. Therefore, we obtain a representation

η : π1(M) → GL(z).
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Form the associated vector bundle

E := M̃ ×η z := (M̃ × z)/π1(M) →M

and let G act on E by g · (x, Z)π1(M) = (gx, Z)π1(M).
The evaluation map v : M̃ × z → TM̃ is π1(M)-equivariant, that is,

ev(γ(x), X(x)) = dγxX(x),

and TM̃/π1(M) = TM . So we obtain a homomorphism of vector bundles
ev : E → TM . The fact that X ∈ z implies that dgxX(x) = X(gx) (on M̃),
from which it follows that ev commutes with the G-actions on E and TM .
By Corollary 7.5, the image of ev contains the measurable subbundle g(x)
of tangent spaces to the G-orbits.

Since the algebraic hull for the action ofG on the frame bundle associated
to the vector bundle x 7→ gx contains Ad(G), it follows that the algebraic
hull for the G-action on the GL(z)-principal bundle

P := (M̃ ×GL(z))/π1(M))

also contains Ad(G). On the other hand, the algebraic hull of the G-action
on P is contained in the Zariski closure, H, of the image of π1(M) under
the representation η. In fact, P contains a G-invariant H-reduction, given
by (M̃ × GL(z))/π1(M). With this remark, the proof of Theorem 7.1 is
complete.

8 Appendix A - Basic concepts in dynamics

G-spaces. Let G be a group and X a set. A G-action on X is a map
Φ : G×X → X that satisfies the following two properties:

1. Φ(e, x) = x for all x ∈ X, where e is the identity of G.

2. Φ(g2,Φ(g1, x)) = Φ(g2g1, x) for all g1, g2 ∈ G and x ∈ X.

For each g ∈ G, let Φg : X → X be defined by Φg(x) := Φ(g, x). Then Φg is
a bijection from X onto itself, with inverse Φg−1 , and the map g 7→ Φg from
G into the group of bijective self-maps of X is a group homomorphism. We
often write g · x or g(x), or simply gx, instead of Φ(g, x). The definition of
G-action just given is usually called a left-action of G. By a right-action of
G on M we mean a map Φ : M ×G→M such that 2 above is replaced with

Φ(Φ(x, g1), g2) = Φ(x, g1g2).
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For each x ∈ X, we define the orbit of x by

Gx := {Φg(x) | g ∈ G}.

The orbits of a G-action partition X into disjoint sets, namely Gx are
the equivalence classes of the relation

x ∼ y if and only if there exists g ∈ G such that x = gy.

The orbit space is the set of equivalence classes, denoted G\X. The action
Φ is called transitive if the G-space has only one orbit, i.e. X = Gx for
some x.

Typically, the G-action will leave invariant, or preserve, some structure
on X such as a topology, a measurable structure, a smooth manifold struc-
ture, or a structure of algebraic variety.

Let H be a closed subgroup of G. Then the coset space

G/H = {gH | g ∈ G}

has the quotient topology induced by the natural projection π : G→ G/H,
π(g) = gH, namely, the open subsets of G/H are π(U) = {gH | g ∈ U} for
all open sets U ⊂ G. With respect to the quotient topology, π is continuous
and open and G/H is a Hausdorff space.

The kernel of an action Φ, denoted Ker(Φ), is the kernel of the homomor-
phism g 7→ Φg, which is a normal subgroup of G. When Ker(Φ) is trivial,
the action is said to be effective. If the action is not effective, Φ induces an
effective action of G/Ker(Φ) on X. The action is called locally effective if
Ker(Φ) is a discrete subgroup of G.

For each x ∈ X, the isotropy group of x is defined by

Gx := {g ∈ G | gx = x}.

Gx is a subgroup of G and it is immediate that Ggx = gGxg
−1 for each

g ∈ G and x ∈ X. Moreover, Ker(Φ) =
⋂

x∈X Gx. If Gx = {e} for all x ∈ G,
we say that the G-action is free. The action is called locally free if Gx is a
discrete subgroup of G for all x in X.

A topological space X is said to be T1 if each point x ∈ X is closed. It
is an easy consequence of the definitions that whenever X is a T1 G-space,
each isotropy group Gx as well as the kernel of Φ are closed subgroups of G,
and that G/Ker(Φ) is a topological group in a natural way. Moreover, the
induced (effective) action of G/Ker(Φ) makes X a topological G/Ker(Φ)-
space.
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The Orbit Space. Until we make any further requirement G will be
a locally compact second countable topological group and X a complete
second countable metrizable G-space. We give G\X the quotient topology
induced by the natural projection that to each x ∈ X associates its orbit.

We say that the σ-algebra B of Borel sets, i.e. the σ-algebra generated by
the open sets in G\X, is countably separating if there is a sequence Bi ∈ B
such that for each pair of points in X one can find a Bi that contains exactly
one of the two points. In this case, the G-action will be called tame.

The orbit Gx of a topological G-space X is locally closed if it is open in
its closure Gx ⊂ X. The next theorem due to Glimm and Effros gives a
useful characterization of tame actions. The proof can be found in [22].

Theorem 8.1 Suppose that Φ is a continuous action of a locally compact
second countable group G on a complete second countable metrizable space
X. Then the following are equivalent:

1. All orbits are locally closed.

2. The action is tame.

3. For every x ∈ X, the natural map G/Gx → Gx is a homeomorphism,
where Gx has the relative topology as a subset of X.

An element x in a G-space X is said to be a fixed point if Gx = G. It is a
periodic point if G/Gx is compact. A (topological) G-space X is said to be
topologically transitive if some G-orbit is dense in X. If all orbits are dense,
the action is called minimal. A subset A ⊂ X is called G-invariant if for
each x ∈ A and g ∈ G, gx ∈ A. An equivalent definition of minimal action
is that X does not have a proper closed G-invariant set, since the closure of
a G-invariant set is a G-invariant set. A point x of a topological G-space X
will be called recurrent if for each neighborhood U of x and each compact
K ⊂ G, there is g in the complement of K such that gx ∈ U . It is immediate
from the definitions that periodic points are recurrent. Furthermore, if both
the orbit of x and its complement are dense in X, then x is a recurrent
point. We leave the verification of this last claim as an exercise to the
reader. Notice that the action of G on itself by translations is topologically
transitive—in fact transitive—but not recurrent.

Invariant measures. Let X be a measurable space with σ-algebra A
and T a measurable map from X into to another measure space Y with
σ-algebra B. If µ is a measure on (X,A), we define T∗µ as the measure on
(Y,B) such that

T∗µ(B) := µ(T−1B)
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for each B ∈ B.
A measurable map T of a measure space (X,A, µ) into itself is said to be

measure preserving if T∗µ = µ. We also say that µ is an invariant measure
for T . If T∗µ and µ are in the same measure class (i.e., if they have the same
sets of measure 0) we say that µ is a quasi-invariant measure for T . We say
that T is a measure preserving transformation of (X,A, µ) if it is bijective
and T and T−1 are measurable and measure preserving.

Let G be a locally compact second countable topological group. Let
(X,A, µ) be a measure space. A measure preserving action of G on X is
an action defined by a measurable map Φ : G×X → X, where G×X has
the product measurable structure, and the maps Φg := Φ(g, ·), g ∈ G, are
measure preserving transformations of X. Of course, a G-space defined by a
continuous G-action is also a measurable G-space for the σ-algebra of Borel
sets. We say that X is a G-space with invariant measure µ.

One may also consider a G-space with quasi-invariant measure µ, in
which case the G-action preserves only the measure class of µ. As before,
we will often write Φg(x) simply as gx. In this notation, a G-invariant
measure µ satisfies g∗µ = µ.

If aG-space admits a measure µ that is both invariant and finite, then the
Z-action generated by each element of G has following recurrence property.

Theorem 8.2 (Poincaré Recurrence) Let X be a Z-space, the Z-action
being generated by a transformation g that preserves a probability measure
µ on X. Then for any set E ∈ A, µ-almost every point x ∈ E returns
infinitely often to E. More precisely, there is a measurable subset F of E
such that µ(F ) = µ(E) and, for each x ∈ F , a sequence n1 < n2 < . . . such
that gnix ∈ E for all i.

Ergodicity. A measurable map F : X → Y between G-spaces is called
a G-map if

F (gx) = gF (x)

for all g ∈ G and x ∈ X. If the G-action on F (X) is trivial, we say that
F is G-invariant. Given a quasi-invariant measure µ on X, we say that a
measurable map F between G-spaces X and Y is a G-map relative to µ if
for each g ∈ G

µ({x ∈ X : F (gx) 6= gF (x)}) = 0.

A G-space X, with a quasi-invariant measure µ, is said to be ergodic if
every G-invariant measurable set is either null (i.e, it has zero measure) or
conull (i.e., its complement has zero measure). We also say that µ is an
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ergodic measure for the G-space X. Therefore, the action is ergodic if X
cannot be decomposed as the disjoint union of two G-invariant measurable
subsets, both with positive measure.

A nonergodic G-invariant measure can be “disintegrated” in terms of its
“ergodic components.” The following theorem makes this precise.

Theorem 8.3 (Ergodic decomposition) Let X be a compact metriz-
able space with a continuous action of a locally compact second countable
group G, and let µ be a finite Borel measure on X. Then, there exists
a measure space E with measure ν and for each α ∈ E a measure space
(Xα,Aα, µα) such that the sets {Xα}α∈E form a partition of X into mea-
surable G-invariant subsets and

1. for any measurable set A ⊂ X, A ∩ Xα belongs to Aα for ν-almost
every α ∈ E and

µ(A) =
∫
E
µα(A ∩Xα) dν(α)

2. for ν-almost every α ∈ E , Xα is an ergodic G-space relative to the
measure µα.

The following proposition shows one way in which ergodicity relates to
topological properties of the action.

Proposition 8.4 Suppose that X is a second countable topological space
and that one is given a continuous action of a locally compact second count-
able topological group G. Suppose that the action is ergodic relative to a
quasi-invariant measure µ which is positive on open sets. Then for almost
every x ∈ X, the orbit {gx : g ∈ G} is dense in X.

A measurable space is called countably separated if there is a countable
family of measurable sets that separates points.

Proposition 8.5 Suppose that X is an ergodic G-space, Y is a countably
separated measurable space and f : X → Y is a strict G-invariant measur-
able function. Then f is almost everywhere constant.

9 Appendix B - Semisimple Lie groups

We only consider here linear Lie groups, that is, (real) subgroups ofGL(n,C).
We denote by A∗ the complex conjugate transpose of A. The Cartan invo-
lution of GL(n,C) is the homomorphism

Θ : A 7→ (A∗)−1.
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The Cartan involution of gl(n,C) (the Lie algebra of GL(n,C)) is the Lie
algebra isomorphism induced from Θ, and is given by θ : X 7→ −X∗. Θ
is indeed a group homomorphism and an involution, i.e. Θ2 is the identity
map, as one can easily check.

Let G be a connected Lie subgroup of GL(n,C). We say that G is a re-
ductive group if it is conjugate to a subgroup that is stable under the Cartan
involution Θ. In other words, G is reductive if there is g ∈ GL(n,C) such
that gGg−1 is mapped into itself by Θ. A Lie algebra g ⊂ gl(n,C) is reduc-
tive if it is conjugate by an element in GL(n,C) to a θ-stable subalgebra.
In particular, G is reductive if and only if g is.

The center of a group G is the subgroup

Z(G) = {a ∈ G | ag = ga for all g ∈ G}.

It is clearly a normal subgroup of G. The center of a Lie algebra g is the
subalgebra

z(g) = {X ∈ g | [X,Y ] = 0 for all Y ∈ g}

and is an ideal of g. (A subalgebra n ⊂ g is an ideal if [X,Y ] ∈ n for all
X ∈ n and all Y ∈ g.)

A Lie algebra g ⊂ gln(C) is semisimple if it is reductive and has triv-
ial center. G ⊂ GL(n,C) is a semisimple Lie group if its Lie algebra is
semisimple.

A Lie algebra is said to be simple if its only ideals are {0} and itself.
Given next is a list of the classical semisimple groups. (Most are, in fact,

simple.) In is the identity matrix of size n and

J2n :=
(

0 −In
In 0

)
, Kp,q :=

(
Ip,q 0
0 Ip,q

)
, Ip,q :=

(
−Ip 0
0 Iq

)
.

51



SL(n,C) = {A ∈ GL(n,C) | detA = 1}
SL(n,R) = {A ∈ GL(n,R) | detA = 1}
Sp(2n,C) = {A ∈ GL(2n,C) | AtJ2nA = J2n}
Sp(2n,R) = {A ∈ GL(2n,R) | AtJ2nA = J2n}
SO∗(2n) = {A ∈ SL(2n,C) | AtA = I2n, A

∗J2nA = J2n}
SU∗(2n) = {A ∈ SL(2n,C) | AJ2n = J2nA}
SOn(C) = {A ∈ SL(n,C) | AtA = In}
SO(p, q) = {A ∈ SL(n,R) | AtIp,qA = Ip,q}
SU(p, q) = {A ∈ SL(n,C) | A∗Ip,qA = Ip,q}
Sp(p, q) = {A ∈ GL(2(p+ q),C) |

A∗Kp,qA = Kp,q, A
tJ2(p+q)A = J2(p+q)}.

Real rank. Since θ is an involution, i.e. θ2 = id, its only eigenvalues
are 1 and −1. We define subspaces k and p of the θ-stable Lie algebra g as
follows:

k := {X ∈ g | θ(X) = X}
p := {X ∈ g | θ(X) = −X}.

Since θ is a Lie algebra automorphism, k is a Lie subalgebra, but p is only a
subspace. As a vector space, g = k⊕ p.

Introduce in g an inner product by

〈X,Y 〉 = −Re(Tr(ad(X) ◦ ad(θY )))

where ad(X) is the linear map on g defined by ad(X)Z = [X,Z]. For each
X ∈ p, the operator ad(X) on g is self-adjoint with respect to the given
inner product. Therefore ad(X) is diagonalizable with real eigenvalues. Let
a be a maximal abelian algebra in p. More precisely, a is abelian and is
not properly contained in a subspace of p consisting of commuting elements.
The operators ad(X), X ∈ a, commute since

0 = ad([X,Y ]) = ad(X) ◦ ad(Y )− ad(Y ) ◦ ad(X)

for X,Y ∈ a. Therefore, it is possible to find a basis for g which simultane-
ously diagonalizes all the operators ad(X), X ∈ a.

The subalgebra a will be called an R-split Cartan subalgebra of g. A
more descriptive name is “maximal abelian R-diagonalizable subalgebra.”
The dimension of a is called the real rank of g.
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10 Appendix C - Algebraic actions

Let G be a connected Lie group and let g be its Lie algebra. Then G has
a canonical representation into the group of real automorphisms of g, the
adjoint representation, defined as

Ad : G→ GL(g)

such that Ad(g)(X) = gXg−1. Although the adjoint representation is not
in general faithful, its kernel is precisely the center of G, as one can easily
check. If G is semisimple, its center Z is a closed subgroup with trivial Lie
algebra, therefore Z is discrete. Therefore, for a connected semisimple G,
G/Z is isomorphic to Ad(G).

We recall that a linear algebraic group is a group of matrices defined by
polynomial conditions on their entries.

Proposition 10.1 Let G be a connected semisimple Lie group and Z its
center. Then the adjoint representation defines an isomorphism between
G/Z and the connected component of the identity of the group of real points
of a linear algebraic group defined over R.

The algebraic group of the previous theorem is called the adjoint group
of G. In particular, if G is a connected semisimple Lie group with trivial
center, then G is naturally isomorphic to the identity component of a real
algebraic group.

We state now a stratification theorem for algebraic actions due to Rosen-
licht. (For general properties about algebraic groups and actions we refer
the reader to [22] and Rosenlicht’s own paper [19]. See also [6].)

Let V be an affine, projective, or more generally, a quasi-projective
smooth real variety and let H be a linear real algebraic group. An alge-
braic action of H on V is a morphism

Φ : H × V → V

such that Φ is a group action on V .

Theorem 10.2 (Rosenlicht) Let H, V , and Φ be as in the previous para-
graph. There exists a finite partition of V into smooth, locally closed, H-
invariant algebraic varieties

V = V0 ∪ V1 ∪ · · · ∪ Vl
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such that, for each 0 ≤ i ≤ l, the union Vi ∪ · · · ∪ Vl is Zariski closed in V
and contains Vi as a Zariski-open subset. Moreover, for each i, Vi/H has the
structure of a smooth real variety (in particular, a smooth manifold) and
Vi → Vi/H is a smooth fibration.

An immediate consequence of the theorem is that theH-orbits are locally
closed and embedded in V . This, together with theorem 8.1 implies the next
fact.

Corollary 10.3 Let Φ : H × V → V be a real algebraic action. Then
each orbit of Φ is locally closed and is an embedded submanifold of V . In
particular, real algebraic actions are tame.

By a real algebraic 1-parameter group we mean a real algebraic group
isomorphic to either GL(1,R) ∼= R∗ or the additive group R.

Corollary 10.4 Let Φ : H × V → V be a real algebraic action, where H is
a 1-parameter real algebraic subgroup. Then any recurrent point is a fixed
point.

Proof. Since orbits are embedded, any recurrent point x ∈ V must actu-
ally be a periodic point. In that case, the isotropy group of x is the set of
real points of a Zariski closed infinite algebraic subgroup of a 1-dimensional
group, therefore Hx = H and x is a fixed point. �

Given an algebraic group H, let H ′ be the smallest algebraic subgroup of
H containing all the real 1-parameter subgroups—a normal subgroup. We
say that H is generated by real algebraic 1-parameter subgroups if H ′ = H.
For example, a semisimple group without compact factors has this property.

Corollary 10.5 Let Φ : H×V → V be a real algebraic action and suppose
that H is generated by real algebraic 1-parameter subgroups. Let µ be an
H-invariant probability measure on V . Then µ is supported on the set of
H-fixed points.

Proof. This is an immediate consequence of the previous corollary and
Poincaré recurrence. �
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