Chapter V
Connected Spaces

1. Introduction

In this chapter we introduce the idea of connectedness. Connectedness is a topological property
quite different from any property we considered in Chapters 1-4. A connected space X need not
have any of the other topological properties we have discussed so far. Conversely, the only
topological properties that imply “X is connected” are very extreme — such as “|X| < 1” or “X
has the trivial topology.”

2. Connectedness

Intuitively, a space is connected if it is all in one piece; equivalently a space is disconnected if it
can be written as the union of two nonempty “separated” pieces. To make this precise, we need
to decide what “separated” should mean. For example, we think of R as connected even though R
can be written as the union of two disjoint pieces: for example, R =AU B, where
A= (—00,0] and B = (0,00). Evidently, “separated” should mean something more than
“disjoint.”

On the other hand, if we remove the point 0 to “cut” R, then we probably think of the remaining
space X =R — {0} as “disconnected.” Here, we can write X = AU B, where A = (— 0, 0)
and B = (0,00). A and B are disjoint, nonempty sets and (unlike A and B in the preceding
paragraph) they satisfy the following (equivalent) conditions:

i) Aand B areopeninX

ii) Aand B are closed in X

i) (BNclxA) U (ANclyB) = 0 — that is, each of A and B is disjoint from

the closure of the other. (This is true, in fact, even if we use clg instead of clyx.)
Condition iii) is important enough to deserve a name.

Definition 2.1 Suppose A and B are subspaces of (X,7). A and B are called separated if each
is disjoint from the closure of the other — that is, if (B NclxyA) U (ANclxB) = 0.

It follows immediately from the definition that
i) separated sets must be disjoint, and

il) subsets of separated sets are separated: if A, B are separated, C' C A and
D C B, then C and D are also separated.

Example 2.2
1) InR, the sets A = ( — o0, 0] and B = (0, co) are disjoint but not separated. Likewise

in R?, the sets A = {(z,y) : 2* + y* < 1}and B = {(x,y) : (x — 2)® + y* < 1} are disjoint but
not separated.
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2) The intervals A = ( — 00, 0) and B = (0, co) are separated in R but clg A N clg B # 0.
The same is true for the open  halls A= {(z,y):2>+y*<1}and
B={(z,y): (x —2)? +¢y* < 1} in R2.
The condition that two sets are separated is stronger than saying they are disjoint, but
weaker than saying that the sets have disjoint closures.

Theorem 2.3 In any space (X, 7), the following statements are equivalent:

1) ¢ and X are the only clopen sets in X

2)ifAC XandFrA=0,thenA=0orA=X

3) X is not the union of two disjoint nonempty open sets
4) X is not the union of two disjoint nonempty closed sets
5) X is not the union of two nonempty separated sets.

Note: Condition 2) is not frequently used. However it is fairly expressive: to say that

Fr A = () says that no point  in X can be “approximated arbitrarily closely” from both inside
and outside A — so, in that sense, A and B = X — A are pieces of X that are ““separated” from
each other.

Proof 1) < 2) This follows because A is clopen iff Fr A = () (see Theorem 11.4.5.3).

1) = 3) Suppose 3) is false and that X = A U B where A, B are disjoint, nonempty and
open. Since X — A = B is open and nonempty, we have that A is a nonempty proper clopen set
in X, which shows that 1) is false.

3) & 4) Thisis clear.

4) = 5) If 5)isfalse, then X = A U B, where A, B are nonempty and separated.

Since cl BN A = (), we conclude that cl B C B, so B is closed. Similarly, A must be closed.
Therefore 4) is false.

5) = 1) Suppose 1) is false and that A is a nonempty proper clopen subset of X. Then
B = X — Aisnonempty and clopen, so A and B are separated. Since X = AU B, 5)is
false. o

Definition 2.4 A space (X,7)is connected if any (therefore all) of the conditions 1)-5) in
Theorem 2.3 hold. If C' C X, we say that C is connected if C' is connected in the subspace

topology.

According to the definition, a subspace C' C X is disconnected if we can write C' = AU B,
where the following (equivalent) statements are true:

1) Aand B are disjoint, nonempty and open in C'
2) Aand B are disjoint, nonempty and closed in C
3) A and B are nonempty and separated in C'.

If C is disconnected, such a pair of sets A, B will be called a disconnection or separation of C'.

The following technical theorem and its corollary are very useful in working with connectedness
in subspaces.
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Theorem 2.5 Suppose A,BC C C X. Then A and B are separated in C iff A and B are
separated in X.

Proof cleB = CnNclxB (see Theorem 111.7.6),s0 ANcleB=0iff An(clxBNC) =10
iff (ANC)NnclxB=0iff AnclxB =0. Similarly, BNnclcA=0iff BNclxyA=0. e

Caution: According to Theorem 2.5, C is disconnected iff C' = AU B where A and B are
nonempty separated set in C' iff C = AU B where A and B are nonempty separated set in X.
Theorem 2.5 is very useful because it means that we don't have to distinguish here between
“separated in C”” and “separated in X” — because these are equivalent. In contrast, when we say
that C' is disconnected if C'is the union of two disjoint, nonempty open (or closed) sets A, B in
C, then phrase “in C” cannot be omitted: the sets A, B might not be open (or closed) in X.

For example, suppose X = [0,1] andC = [0,3) U (%,1]. The sets A=10,1) and
B = (%, 1] are open, closed and separated in C'. By Theorem 2.5, they are also separated in R —
but they are neither open nor closed in R.

Example 2.6

1) Clearly, connectedness is a topological property. More generally, suppose f : X — Y
is continuous and onto. If B is proper nonempty clopen set in Y, then f~![B] is a proper
nonempty clopen set in X. Therefore a continuous image of a connected space is connected.

2) A discrete space X is connected iff |X| < 1. In particular, N and Z are not connected.

3) Q is not connected since we can write QQ as the union of two nonempty separated sets:
Q={¢eQ: ¢ <2}U{qeQ:q¢*>2}. Similarly, we can show P is not connected.

More generally suppose C' C R and that C'_is not an interval. Then there are points
a<z<bwherea,beCbhutz¢ C. Then{r € C:2 < 2z} ={x € C:x <z} isanonempty
proper clopen setin C. Therefore C'is not connected.

In fact, a subset C' of R is connected iff C is an interval. It is not very hard, using the
least upper bound property of R, to prove that every interval in R is connected. (Try it as an
exercise!' ) We will give a short proof soon (Corollary 2.12) using a different argument.

4) (The Intermediate Value Theorem) If X isconnected and f : X — R is continuous,
then ran (f) is connected (by part 1) so ran(f) is an interval (by part 3). Therefore if a,b € X
and f(a) < z < f(b), there must be a point ¢ € X for which f(c) = z.

5) The Cantor set C'is not connected (since it is not an interval). But much more is true.
Suppose z,y € A C C' and that x < y. Since C' is nowhere dense (see 1V.10), the interval
(z,y) € C, sowe canchoose z ¢ Cwithz < z <y. ThenB=(—o00,2)NA
= (—o0,z]N Ais clopen in A, and B contains x but not y — so A is not connected. It follows
that every connected subset of C' contains at most one point.
A space (X,7) is called totally disconnected every connected subset A satisfies
|A| < 1. The spaces N, Z, P and Q are other examples of totally disconnected spaces.

6) X is connected iff every continuous f: X — {0,1} is constant: certainly, if f is
continuous and not constant, then f~1[{0}] is a proper nonempty clopen set in X so X is not
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connected. Conversely, if X is not connected and A is a proper nonempty clopen set, then the
characteristic function x4 : X — {0, 1} is continuous but not constant.

Theorem 2.7 Suppose f: X — Y. LetT' = {(z,y) € X xY : y = f(x)} = “the graph of f.”
If f is continuous, then graph of f is homeomorphic to the domain of f; in particular, the graph
of a continuous function is connected iff its domain is connected.

Proof We want to show that X is homeomorphic to I". Let h: X — I' be defined by
h(z) = (x, f(x)). Clearly h is a one-to-one map from X onto I'.

Let a € X and suppose (U x V)N T is a basic open set containing h(a) = (a, f(a)).
Since f is continuous and f(a) € V, there exists an open set O in X containing « and such that
fIO]CV. Thena e UNO,and h[U NO] C (U x V)NT,so h is continuous at a.

If U isopenin X, then h[U] = (U x Y)NTI'isopeninI’, so h isopen. Therefore A is
a homeomorphism. e

Note: It is not true that a function f with a connected graph must be continuous. See Example
2.22.

The following lemma makes a simple but very useful observation.

Lemma 2.8 Suppose M, N are separated subsets of X. If C' C M U N and C is connected, then
CCMorCCN.

Proof C N M and C N N are separated (sinceCN"M C MandC NN C N)and
C=(CnNM)J(CnNN). ButCisconnected so (C N M) and (C' N N) cannot form
a disconnection of C'. Therefore either CNM =0 (SOC C N)orCNN =0 (soC C M). e

The next theorem and its corollaries are simple but powerful tools for proving that certain sets are
connected. Roughly, the theorem states that if we have one “central ” connected set C' and other
connected sets none of which is separated from C', then the union of all the sets is connected.

Theorem 2.9 Suppose C and C,, (« € I) are connected subsets of X and that for each o, C,
and C are not separated. Then S = C' U |JC,, is connected.

Proof Suppose that S = M U N where M and N are separated. By Lemma 2.8, either C C M
orC' C N. Without loss of generality, assume C' C M. By the same reasoning we conclude that
for each «, either C, C M or C, C N. But if some C, C N, then C and C, would be
separated. Hence every C, C M. Therefore N = () and the pair M, N is not a disconnection of
S. e

Corollary 2.10 Suppose that for each o € I, C,, is a connected subset of X and that for all
a#pel C,NCs#0. ThenY{C, : a € I} is connected.
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Proof If I =0, then |J{C, : a € I} =0 isconnected. If I # (), pick an o € I and let C,,, be
the “central set” C' in Theorem 2.9. For all « €1, C,NC,, # 0, so C, and C,, are not
separated. By Theorem 2.9, |J{C, : « € I} is connected. o

Corollary 2.11 For each n € N, suppose C,, is a connected subset of X and that C;, N Cp,1 # 0.
Then |, ,C,, is connected.

Proof Let A, = J;_,;C}. Corollary 2.10 (and simple induction) shows that the A4,,'s are
connected. Then () # A; C Ay, C ... C A, C ... Another application of Corollary 2.10 gives
that |~ , A, = U,_,C, is connected. e

Corollary 2.12 Let I CR. Then I is connected iff I is an interval. In particular, R is
connected, so R and () are the only clopen sets in R.

Proof We have already shown that if I is not an interval, then I is not connected (Example
2.6.3). Sosuppose Iisaninterval. If I =) or I = {r}, then I is connected.

Suppose I = [0,1] and that A, B are nonempty disjoint closed sets in I. Then there are points
ap € Aand by € B for which |ag — by| = d(ag, by) = d(A, B).

To see this, define f : A x B — [0,1] by f(z,y) =|z —y|. Ax Bisaclosed
bounded set in R? so A x B is compact. Therefore f has a minimum value, occurring at
some point (ag, by) € A x B (see Exercise IV.E23.)

Let z=2tb c[0,1].  Since |z —by| = |2t —py| = [ | < Jag —bo|, we
conclude z ¢ A. Similarly, z ¢ B. Therefore [0,1] # AU B, so [0, 1] is connected.

Suppose a < b. The interval [a, b]is homeomorphic to [0, 1], so each interval [a,b] is
connected. Since (a,b) =U,~, [a+ +,b— 1], Corollary 2.10 implies that (a,b) is

connected. Similarly, Corollary 2.10 shows that each of the following unions is
connected:

Unzila.b— 5] = [a,b)
Uneila+ 5.0 = (a,b]
U~ [a,a + n] = [a,)

U= (a,a +n) = (a,00)
Uszila —n,a] = (= o0, d]
Uszila = n,a) = (= o0,a)
Ui[—n,n] =R e

Corollary 2.13 For every n € N, R" is connected.

Proof By Corollary 2.12, R! is connected. R”" can be written as a union of straight lines (each
homeomorphic to R) through the origin and Corollary 2.10 implies that R" is connected. e
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Corollary 2.14 Suppose that for all z,y € X there exists a connected set C,, C X with
z,y € Cpy. Then X is connected.

Proof Certainly X = () is connected. If X # (), choose a € X. By hypothesis there is, for each
y € X, a connected set C,, containing both « and y. By Corollary 2.10, X = J{C,, : y € X}
is connected. e

Example 2.15 Suppose C' is a countable subset of R", where n > 2. Then R" — C' is connected.
In particular, R™ — Q" is connected. To see this, suppose x, y are any two points in R" — C'.
Choose a straight line L which is perpendicular to the line segment Zy joining xz and y. For each

p € L, let C, be the union of the two line segments zp U py. C,, is the union of two intervals
with a point in common, so C,, is connected.

Hp

=l
e

If p’ # p, then Cy N C), = {z,y}. Soif z € C, then z is in at most one C),. Therefore (since
C'is countable), there is a p* € L for which C,, NC =0. Then z,y € C) CR"—C. So
Corollary 2.14 (with C,,, = C)+ ) shows that R" — C' is connected.

The definition of connectedness agrees with our intuition in the sense that every set that you think
(intuitively) should be connected is actually connected according to Definition 2.4.  But
according to Definition 2.4, certain strange sets also turn out “unexpectedly” to be connected.
R™ — Q™ might fall into that category. So the official definition forces us to try to expand our
intuition about what “connected” means. Question: Is R” — P" connected?

This situation is analogous to what happens with the “e-6 definition” of continuity. Using that
definition it turns out that every function that you expect (intuitively) should be continuous
actually is continuous. If you have a “problem” with the official definition of continuity, it would
be that it almost seems “too generous” — it allows some “unexpected” functions also to be
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continuous. An example is the well-known function from elementary analysis: f:R — R,
where
1

{ . if x = g in lowest terms

0 if zisirrational

fz) =

f is continuous at x iff x is irrational.

Definition 2.16 Suppose X is connected. If X — {p} is not connected, then p is called a
cut point in X.

If f: X — Y isa homeomorphism, then it is easy to check that p is a cut point in X iff f(p) is a
cut point in Y. Therefore homeomorphic spaces have the same number of cut points.

Example 2.17 R" is not homeomorphic to R if n > 2.

Proof Every point p € R is a cut point. But Example 2.15 shows that R™ has no cut points
when n > 2.

It is also true — but much harder to prove — that R™ and R™ are not homeomorphic whenever
m # n. One way to prove this is to develop theorems about a topological property called
dimension. Then it turns out (thankfully) that dim R™ = m # n = dim R" so these spaces are not
homeomorphic. One can also prove this result using homology theory — a topic developed

in algebraic topology.

Example 2.18 How is S* topologically different from [0,1]? Both are compact connected
metric spaces with cardinality ¢, and there is no topological property from Chapters 1-4 that can
distinguish between these spaces. The difference has to do with connectivity. The interval [0, 1]
has cut points p (if p is not an endpoint, then p is a cut point); but S has no cut points since
St — {p} is homeomorphic to (0, 1) for every p € S*.

Corollary 2.19 Suppose (X,7) and (Y,7 ') are nonempty topological spaces. Then X x Y is
connected iff X and Y are connected. (It follows by induction that the same result holds for

any finite product of spaces. When infinite products are defined in Chapter 6, it will turn out

that the product of any collection of connected spaces is connected.)

Proof = Suppose X xY is connected. Since X xY #(, we have X =7x[X xY].
Therefore X is the continuous image of a connected space, so X is connected. Similarly, Y is
connected.

< Let X and Y be nonempty connected spaces, and consider any two points (a, b) and
(c,d)in X xY. Then X x {b} and {c} x Y are homeomorphic to X and Y, so these “slices”
of the product are connected and both contain the point (c,b). By Corollary 2.10,
C = (X x{b})U ({c} xY) is aconnected set that contains both (a, ) and (¢, d). By Corollary
2.14, we conclude that X x Y is connected. e

(Corollary 2.19 gives an another reason why R™ is connected for n > 1.)
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Corollary 2.20 Suppose C' is a connected subset of X. If C C A C clC, then A is connected.
In particular, the closure of a connected set is connected.

Proof For each a€ A, {a} and C are not separated. By Theorem 2.9,
A=CUJ{{a}:a e A} isconnected.

Example 2.21 By Corollary 2.20, the completion of a connected pseudometric space (X, d) must
be connected.

sin? 0<z<1
0 z=0
oscillates more and more rapidly between — 1 and 1as x — 0. Part of the graph is pictured
below. Of course, f is not continuous at x = 0. Let I"be the graph of the restricted function
g = f1(0,1]. Since g is continuous, Theorem 2.7 shows that I" is homeomorphic to (0,1] so I" is
connected.

Example 2.22 Let f(z) = { . Then f(%) = 0 for every n € N and the graph

\b/

Because cIT' =T U ({0} x [ — 1, 1]), Corollary 2.20 gives that I U A is connected for any set
AC {0} x[—1,1]. Inparticular, 'y =T"U{(0,0)} (the graph of f) is connected.

I" is sometimes called the “topologist's sine curve.”

Therefore, a function f with a connected graph need not be continuous. However, it is true that if
the graph of a function f : R — R is a closed connected subset of R?, then f is continuous. (The
proof is easy enough to read: see C.E. Burgess, Continuous Functions and Connected Graphs,
The American Mathematical Monthly, April 1990, 337-339.)

3. Path Connectedness and Local Path Connectedness
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In some spaces X, every pair of points can be joined by a path in X. This seems like a very
intuitive way to describe “connectedness”. However, this property is actually stronger than our
definition for a connected space. .

Definition 3.1 A path in X is a continuous map f : [0, 1] — X. The path starts at its initial point
£(0) and ends at its terminal point f(1). We say f is a path from f(0) to f(1).

Sometimes it helps to visualize a path by thinking of a point moving in X from f(0) to f(1) with
f(t) representing its position at “time” t € [0,1]. Remember, however, that the path, by
definition, is the function f, not the set ran(f) C X. To illustrate the distinction: suppose f is a
path from z to y. Then the function ¢ : [0, 1] — X defined by g(t) = f(1 — t) is a different path
(running in the “opposite direction,” from y to z), even though ran(f) = ran(g).

Definition 3.2 A topological space X is called path connected if, for every pair of points
x,y € X, there is a path from z to y in X.

Note: X is called arcwise connected if, for every pair of points z,y € X, there exists a
homeomorphism f : [0,1] — X with f(0) =z and f(1) =y. Such a path f is called an arc
from x to y. If a path f in a Hausdorff space X is not an arc, the reason must be that f is not
one-to-one (why?). It can be proven that a Hausdorff space is path connected iff X is arcwise
connected. Therefore some books use “arcwise connected” to mean the same thing as “path
connected.”

Theorem 3.3 A path connected space X is connected.

Proof () is connected, so assume X # () and choose a point a € X. For each x € X, there is a
path f, froma to z. Let C, = ran(f,). Each C, is connected and contains a. By Corollary 2.10,
X =J{C; : x € X} isconnected. e
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Sometimes path connectedness and connectedness are equivalent. For example, a subset I C R is
connected iff I is an interval iff I is path connected. But in general, the converse to Theorem
3.,3 is false as the next example shows.

sin T 0<z<l
0 z=0
graph I'; is connected. However, we claim that there is no path in I'; from (0,0)to (1,0) and
therefore I'; is not path connected.

Example 3.4  Consider f(x) = { In Example 2.22, we showed that the

Suppose, on the contrary, that » : [0,1] — I'y is a path from (0, 0)to (1,0). For ¢ € [0, 1], write
h(t) = (hi(t), hao(t)) € T'y.  hy and he are continuous (why?). Since [0,1] is compact, & is
uniformly  continuous (Theorem 1V.9.6) so we can choose &6; >0 for which
lu—v| <6 = d(h(u),h(v)) < 1= |ha(u) — ha(v)| < 1.

We have 0 € h71((0,0)). Let #* =suph~1(0,0). Then 0 < #* < 1. Since h~1(0,0) is a closed
set, t* € h=1(0,0) so h(t*) = (0,0). (We can think of t* as the last “time™ that the path h goes
through the origin).

Choose a positive § < 6; so that 0 < t* < ¢t* + ¢ < 1. Since hy(t*) = 0 and h;(t* 4+ 6) > 0, we
can choose a positive integer N for which

0="hi(t") < 77 < % <ha(t" +6).

By the Intermediate Value Theorem, there exist points u,v € (t*,t* + §) where hy(u) = NLH

and i (v) = . Then hy(u) = sin M and hy(v) = sin®Z, so |ho(u) — ho(v)| = 1. But this
is impossible since |u — v| < 6 < 6; and therefore |ha(u) — ho(v)| < 1. e

Note: Let I" be the graph of the restriction g = f|(0 1]. For any set A C {0} x [ — 1, 1], a similar
argument shows that I' U A is not path connected. In particular, clT’

=T U ({0} x [—1,1]) is not path connected. But I is homeomorphic to (0, 1], so I"is path
connected. So the closure of a path connected space need not be path connected.

Definition 3.5 A space (X, 7) is called

a) locally connected if for each point x € X and for each neighborhood N of z,
there is a connected open set U suchthatz € U C N.

b) locally path connected if for each point z € X and for each neighborhood N
of z, there is a path connected open set U suchthat x € U C N.

Note: to say U is path connected means that any two points in U can be joined by a path in U.
Roughly, “locally path connected” means that ““nearby points can be joined by short paths.”

Example 3.6
1) R™ is connected, locally connected, path connected and locally path connected.

2) A locally path connected space is locally connected.

222



3) Connectedness and path connected are “global” properties of a space X: they are
statements about X “as a whole.” Local connectedness and local path connectedness are
statement about what happens “locally” (in arbitrarily small neighborhoods of points) in
X Ingeneral, global properties do not imply local properties, nor vice-versa.

a) Let X = (0,1) U (1,2]. X is not connected (and therefore not path
connected) but X is locally path connected (and therefore locally connected).
The same relations hold in a discrete space X with more than one point.

b) Let X be the subset of R? pictured below. Note that X contains the
“topologist's sine curve” as a subspace — you need to imagine it continuing to
oscillate faster and faster as it approaches the vertical line segment in the picture:

The X is path connected (therefore connected, but X is not locally connected:
if p = (0,0), there is no open connected set containing p inside the
neighborhood N = B% (p) N X. Therefore X is also not locally path connected.

Notice that Examples a) and b) also show that neither “(path) connected” nor
“locally (path) connected” implies the other.

Lemma 3.7 Suppose that f is a path in X from a to b and ¢ is a path from b to ¢. Then there
exists a path h in X from a to c.

Proof f ends where g begins, so we feel intuitively that we can “join” the two paths *“end-to-

end” to get a path ~ from a to ¢. The only technical detail to handle is that, by definition, a path
h must be a function with domain [0, 1]. To get 4 we simply “join and reparametrize:”
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f(2t) 0<t<i
g2t —1) i<t<1
twice as fast as before: first along the path f and then continuing along the path g.)
The function A is continuous by the Pasting Lemma (see Exercise I11.E22). e

Define h: [0,1] — X by h(t) = { . (You can imagine a point moving

Theorem 3.8 If X is connected and locally path connected, then X is path connected.

Proof If X =10, then X is path connected. So assume X #0. For ae€ X, let
C = {z € X : there exists a path in X froma to z}. Then C' # ) since a € C' (why?). We want
to show that C' = X.

Suppose x € C. Let f be a path in X from a to z. Choose a path connected open set U
containing x. For any point y € U, there is a path g in U from z to y. By Lemma 3.7, there is a
path 4 in X fromatoy,soy € C. Therefore x € U C C, so C'is open.

Suppose x ¢ C' and choose a path connected open set U containing z. If y € U, there is a path g
in U from y to x. Therefore there cannot exist a path in X from ato y — or else, by Lemma 3.7,
there would be a path i from @ to = and = would be in C. Thereforey ¢ C,soz € U C X — C,
so C'is closed — and therefore clopen.

X is connected and C' is a nonempty clopen set, so C' = X. Therefore X is path connected. o

Here is another situation (particularly useful in complex analysis) where connectedness and path
connected coincide:

Corollary 3.9 An open connected set O in R" is path connected.
Proof Suppose x € O. If N is any neighborhood of = in O, then x € into N = U C O. Since O

is open in R", and U is open in O, U is also open in R". Therefore there is an € > 0 such that
B.(z) CU C N. Since B.(z) is an ordinary ball in R", B.(z)is path connected. (Of course,
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this might not be true for a ball in an arbitrary metric space.) We conclude that O is locally path
connected so, by Theorem 3.8, O is path connected. e

4. Components

Informally, the “components” of a space X are its largest connected subspaces. A connected
space X has exactly one component — X itself. In a totally disconnected space, for example N,
the components are the singletons {x}. In very simple examples, the components “look like” just
what you imagine. In more complicated situations, some mild surprises can occur.

Definition 4.1 A component C' of a space X is a maximal connected subspace. (Here, “maximal
connected” means: C'is connected and if C' C D C X where D is connected, , then C' = D)

Foranype X,letC, =|J{A:pe A C X and Ais connected}. Then {p} € C,; since C,, is

a union of connected sets each containing p, C), is connected (Corollary 2.10). If C;, € D and D
is connected, then D was one of the sets A in the collection whose union defines C,, — so
D C C, and therefore C), = D. Therefore C), is a component of X that contains p, so can be
written as the union of components: X = (J,.xC,.

Of course it can happen that C), = C, when p # ¢ : for example, in a connected space X,
C,= X forevery pe X. Butif C, #C,, then C,NnC,=0: if ze€C,NC,, then C,UC,
would be a connected set strictly larger than C,,.

The preceding paragraphs show that the distinct components of X form a partition of X : a
pairwise disjoint collection whose union is X. If we define p ~ ¢ to mean that p and ¢ are in the
same component of X, then it is easy to see that “ ~ ” is an equivalence relation on X and that
C), is the equivalence class of p.

Theorem 4.2 X is the union of its components. Distinct components of X are disjoint and each
component is a closed connected set.

Proof In light of the preceding comments, we only need to show that each component C,, is
closed. Butthisis clear: C, C clC, and cl C, is connected (Corollary 2.20). By maximality,
we conclude that C' = cl C),. e

It should be clear that a homeomorphism maps components to components. Therefore
homeomorphic spaces have the same number of components.
Example 4.3

1) Let X = [1,2] U [3,4] U[5,6] CR. X has three components: [1,2], [3, 4], and [5, 6].
For each 0 < p < 1, we have C, = [0, 1]. If C'is a component in a space X that has only finitely

many components, then X — C is the union of the other finitely many (closed) components.
Therefore C' is clopen.
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However, a space can have infinitely many components and in general they need not be
open. For example, if X = {0} U{X :n € N} C R, then the components are the singleton sets

{z} (why?). The component {0} is not open in X.

2) InR?, X =J5_,B,,((n,0)) is not homeomorphic to ¥ = (J;_,B, ,((n,0)) because
X has two components but Y has three.

3) If C C X and C is nonempty connected and clopen, then C' is a component of X:
forif () £#C C D C X, then C is clopen in D so if D is connected, then C = D.

4) The sets X and Y in R? pictured below are not homeomorphic since X contains a cut
point p for which X — {p} has three components. Y contains no such cut point.

Example 4.4  The following examples are meant to help “fine-tune” your intuition about
components by pointing out some false assumptions that you need to avoid. (Take a look back at
Definition 2.4 to be sure you understand what is meant by a ““disconnection.”)

1) Let X = {0} U{% : n € N}. One of the components of X is {0}, but {0}
is not clopen in X. Therefore the sets A= {0} and B={l:neN} do not form a
disconnection of X. A component and its complement may not form a disconnection of X.

2) If a space X is the union of disjoint closed connected sets, these sets need not be
components. For example, [0, 1] = [, ¢ 1{r}
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3) If x and y are in different components of X, then there might not exist a disconnection
AU B of X for which x € Aand y € B. For example, consider X = L; U Ly UJ,;~ | R,, C R?,
where:

Ly and L are the straight lines with equationsy =2 and y = — 2.

Foreach n € N, R, is the rectangle {(z,y) : |z| = nand |y| = 2 — 1}. (The top and

n

bottom edges of the R,'s approach the lines L, and L,.) The first four R,,'s are pictured:

L

AN N

Each R, is connected and clopen in X. Therefore each R, is a component of X. (See Example
4.3.3)

The other components of X are L, and L,. For example:

Ly is connected. Let C be the component that contains L;. C must be disjoint from
each component R,,, so if L; # C, then the additional points in C' are from L, — that is,
C = Ly U Dwhere D C Ly. Butin that case, L; would be a nontrivial clopen set in C'
and C would not be connected. Therefore L; = C.

Suppose that A and B are disjoint clopen sets in X for which X = AU B. A and B are separated
so, by Lemma 2.8, L, is either a subset of A or a subset of B: without loss of generality, assume
that Lo C A and let p € Ly. Since Ais open, p has a neighborhood N C A. But N intersects
infinitely many connected R,,'s, each of which, therefore, must also be a subset of A. Since the
top edges of these R,,'s approach L4, there are pointson L; in cl A = A. Therefore L, intersects
A,s0Ly CA. SoLiULy CA.

In particular: (0,2) € L, and (0, — 2) € Lo are in different components of X, but both are in the
same piece A of a disconnection.

Conversely, however: suppose AU B is a disconnection of some space Y, with z € A and
y € B. Then z and y must be in different components of Y. (Why?)

227



4) Suppose X is a connected space with a cut point v. Let C' be a component of X — {v}.
(Draw a few simple pictures before reading on.)

It can happen that v ¢ cly C' (Would you have guessed that v must be in clxC?)
For example, consider the following subspace X = C' U B of R? where
C is the interval [3, 1] on the z-axis and
B ={(0,0)} UlJ,~,C, is a“broom” made up of disjoint “straws” C,,

(each a copy of (0, 1]) extending out from the origin and arranged so that
slope(C;,) — 0.

1

c2

C3

122 1

The broom B is connected (because it's path connected), so clxB = X is connected.

Let v = (0,0). Each straw C, is connected and clopen in X — {v}. Therefore each C, is a
component of X — {v}, and the remaining connected subset, C' is the remaining component of
X —{v}.

So v is a cut point of X and v ¢ clxC.

Note: for this example, v ¢ clxC, but v is in the closure of the each of the other
components C,, of X — {v}.

There is a much more complicated example, due to Knaster and Kuratowski
(Fundamenta Mathematicae, v. 2, 1921). There, X is a connected set in R? with a cut
point v such that X — {v} is totally disconnected. Intuitively, all the singleton sets {z}
are “tied together” at the point v to create the connected space X; removing v causes X
to “explode” into “one-element fragments.” In contrast to the “broom space”, all
components in X — {v} are singletons, so v is not in the closure (in X) of any of them.
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Here is a description of the Knaster-Kuratowski space X (sometimes called “Cantor’s
teepee”). The proof that is has the properties mentioned is omitted. (You can find it on p.
145 of the book Counterexamples in Topology (Steen & Seebach). Define

C = the Cantor set ( C [0,1]) on the z-axis in R?, and let v = (1, 1).

D = {p € C : pisthe endpoint of one of the “deleted middle thirds” in the
construction of C'}
={pe C: p=0.a1a2a3...ay...pase three, Where the a,,'s are eventually equal
to 0 or eventually equal to 2}. Of course, D is countable.

E =C — D (= "“the points in C that are not isolated on either side in C")
ThenC = DUE, DN E = ()and both D and E are dense in C.
Foreach p € C, letwp = the line segment from v to p and define a subset of 7p by

{(z,y) € vp: yisrational} ifpe D
C,=
{(z,y) € vp: yisirrational} ifpe E.

Cantor's teepee is the space X = J,~C),. One can show that X is connected and that
X — {v} is totally disconnected.

5. Sierpinski's Theorem

Let 7 be the cofinite topology on N. Clearly, (N, 7") is connected. But is it path connected?
(Try to prove or disprove it.) This innocent sounding question turns out to be harder than you
might expect.

If f:]0,1] — (N, 7) is a path from (say) 1 to 2 in (N, 7). Then ran(f) is a connected set
containing at least two points. But every finite subspace of (N, 7) is discrete, so ran( f) must be
infinite. Therefore [0,1] = U,~, f " (n), where infinitely many of the sets f~*(n) are nonempty.
Is this possible? The question is not particularly easy. In fact, the question of whether (N, 7) is
path connected is equivalent to the question of whether [0, 1] can be written as a countable union
of pairwise disjoint nonempty closed sets.

The answer lies in a famous old theorem of Sierpinski which states that a compact connected
Hausdorff space X cannot be written as a countable union of two or more nonempty pairwise
disjoint closed sets. (Of course, “countable’ includes ““finite.”” But the*“finite union’” case is
trivial: X is not a union of n nonempty disjoint closed sets (n > 2) since each set

would be clopen — an impossibility since X is connected.)

We will prove Sierpinski's result after a series of several lemmas. The line of argument used is
due to R. Engelking. (It is possible to prove Sierpinski's theorem just for the special case
X =[0,1]. That proof is a little easier but still nontrivial.)
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Lemma5.1 If A and B are disjoint closed sets in a compact Hausdorff space X, then there exist
disjointopensets U and VwithACUand BC V.

Proof Consider first the case where A = {x}, a singleton set. For each y € B, choose disjoint
open sets U, and V,, with = € U, and y € V,,. The open sets V,, cover the compact set B so a
finite number of them cover B, say B C V,, U...UV, =V. LetU =U, N...NU,,. Then
ACU, BCVandU,YV are disjoint open sets.

Suppose now that A and B are any pair of disjoint closed sets in X. For each x € A, pick
disjoint open sets U, and V,, such that {z} C U, and B C V,.. The open U,'s cover the compact
set A, so a finite number of them cover A,say A C U,, U...UU,, = U. Let
V=V,Nn.NV,. ThenACU, BCVandU,V are disjoint open sets. e

Note: If A and B were both finite, an argument analogous to the proof given above would work
in any Hausdorff space X. The proof of Lemma 5.1 illustrates the rule of thumb that *“compact
sets act like finite sets.”

Lemma 5.2 Suppose O is an open set in the compact space (X, 7). If F ={F,: a€I}isa
family of closed sets in X for which (F C O, then there exist a1, ..., «, € I such that
F,NF,N..NF, CO.

Proof Foreachy € X — O, thereisan « such that y ¢ F,,. Therefore {X — F,, : a € I} isan
open cover of the compact set X — O. There exist g, ...cr, € I such that

(X —F,)U(X —F,,)U..U(X —F,,)2>X —0. Taking complements gives that
F,NF,N..NF, CO. e

Definition 5.3 Suppose p € X. Theset @, =({C C X : pe Cand Cisclopenin X } is
called the guasicomponent of X containing p.

@, is always a closed set in X. The next two lemmas give some relationships between the
component C', containing p and the quasicomponent @,,.

Lemma5.4 Ifpe X, then C, C Q,.

Proof If C' is any clopen set containing p, then C,, C C — for otherwise C}, N C and
C, N (X — C)disconnect C,,. Therefore C,, C({C': pe Cand C'isclopen} = Q,. o
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Example 5.5 An example where C), # Q,. InR?, let L,, be the horizontal line segment
[0,1] x {1} and define X = {J;", L, U {(0,0), (1,0)}.

L1

oo (]
The components of X are the sets L,, and the singleton sets {(0,0)} and {(1,0)}.
If C is any clopen set in X containing (0, 0), then C' intersects infinitely many L,,'s so (since the
L,'s are connected) C' contains those L,,'s. Hence the closed set C' contains points arbitrarily

close to (1,0) —so (1,0) isalso in C. Therefore (0,0) and (1, 0) are both in Q (), SO
Clo0) # Q,0)- (Infact, itis easy to check that Qo) = {(0,0), (1,0)}.)

Lemma 5.6 If X is a compact Hausdorff space and p € X, then C), = Q,,.

Proof (), is a maximal connected set and C,, C @,; therefore C,, = @, if we can prove that @,
is connected. Suppose @, = A U B, where A, B are disjoint closed sets in ,. We can assume
that p € A. We will show that B = () — in other words, that there is no disconnection of @,,.

Q, is closed in X, so A and B are also closed in X. By Lemma 5.1, we can choose
disjointopensets U and Vin X withpe ACUand BC V. ThenQ,=AUBCUUV.
Since X is compact and @, is an intersection of clopen sets in X, Lemma 5.2 lets us pick finitely
many clopen sets C1, ..., Cy, suchthatQ, C Cin..NC, CUUV. LetC=CiN..NC, C
isclopenin Xand @, CC CUUYV.

UnCisopenin X and, in fact, U N C'isalso closed in X: sinceclU C X — V, we
havethat U NC =clUNC =clU NclC Dcl(UNC). Therefore U N C is one of the clopen
sets containing p whose intersection defines @, so Q, C U NC C U. Therefore Q, N B = (),
sOB=10(. e

Definition 5.7 A continuum is a compact connected Hausdorff space.
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Lemma 5.8 Suppose A is a closed subspace of a continuum X and that) # A # X. If C'isa
component of A, then C NFr A # (.

Proof Let C be acomponentof Aandletp € C'. Since C C A = cl A, we have that
CNFrA=CnclAncl(X —A))=Cncl(X — A), sowe need to show that

Cnecl(X —A) # (. We do this by contraposition: assuming C' ncl (X — A) = ), we will
prove A = X.

A is compact so Lemma 5.6 gives C =C, =Q, =({Ca C A: pe C, and C, is clopen in
A}. By assumption, C C X —cl(X — A), so by Lemma 5.2 there exist indices a1, as,..., a, for
whichC C C,, = C,, NC,, ...NC,, € X —cl(X — A). Since C,, Ncl (X — A) = 0, we have
Co, NFrA=40.

Cy,isclopenin Aand C,, C A—FrA =intA. Since C,, isopen in int A which is open in X,
C,, 1sopenin X. But C,, is also closed in the closed set A, so C,,, is closed in X. Since X is
connected, we concludethat A = X. o

Lemma5.9 Suppose X is a continuum and that X = (J{F,, : n € N} where the F,,'s are
pairwise disjoint closed sets and F}, # 0 for at least two values of n. Then for each n there exists
a continuum C,, C X such that C,, N F,, = ) and C,, N F; # () for at leasttwo i € N.

Before proving Lemma 5.9, consider the formal statement of Sierpinski's Theorem..

Theorem 5.10 (Sierpinski) Let X be a continuum. If X = | J{F, : n € N} where the F,'s are
pairwise disjoint closed sets, then at most one F,, is nonempty.

(Of course, the statement of the theorem includes the easy ““finite union’ case.) In proving
Sierpinski's theorem we will assume that X = (J{F}, : n € N} where the F,,'s are pairwise
disjoint closed sets and F;, # () for at least two values of n. Then we will apply Lemma 5.9 to
arrive at a contradiction. When all the smoke clears we see that, in fact, there are no continua
which satisfy the hypotheses of Lemma 5.9. Lemma 5.9 is really the first part of the proof (by
contradiction) of Sierpinski's theorem — set off as a preliminary lemma to break the argument
into more manageable pieces.

Proof of Lemma 5.9
fE,=0letC,=X.

Assume F;, # (). Choose m # n with F}, # () and pick a point p € F,,,. By Lemma 5.1, we can
choose disjoint open sets U, V in X with F,, C U and p € F,, C V. Let C, be the component of
pinclV. Certainly C, is a continuum, and we prove that this choice of C,, works. We
have that C,, N F,, = ( (since C,, CclV C X — U)andthat C,, N F,, # (0 (since p € C,, N Fy,).

Therefore, to complete proof, we need only show that for some i # m,n, C,, N F; # (.

Sincepe clV C X — U, we have thatcl V' # (); and cl V' # X because
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() # F,, C U. Therefore, by Lemma 5.8, there is a point ¢ € C,, N Fr(cl V). Since ¢ € Fr(clV)
and F,,, CV Cint(cl V), we have ¢ ¢ F,,,. Andsinceq € Fr(clV) CclV C X — U, we have
that g ¢ F,,. But X is covered by the F}'s, so g € F; for some i # m,n. Therefore C,, N F; # 0.

Proof of Theorem 5.10 We want to show that if X = J,- , F;, where the F,'s are disjoint closed
sets, then at most one F,, # (. Looking for a contradiction, we suppose at least two F;,'s are
nonempty.

By Lemma 5.9, there is a continuum C; in X with C; N F; = () and such that C; has nonempty
intersection with a least two F,,'s. We canwrite C; = C1 N X = CiNU,~, Fn,
=U2,(CinE,) =U,—,(Cy N F,), where at least two of the sets C; N F;, are nonempty.

Applying Lemma 5.9 again (to the continuum C) we find a continuum C5 C C such that Cy N (
CyNFy) =CyyN Fy, =0 and C, intersects at least two of the sets C, N F,.

ThenCy =CoNC = UZOZQ(CQ N (01 N Fn)) = Unoc:2(02 N Fn) = UnOC:3(CQ N Fn), where at
least two of the sets Cy N F,, are nonempty.

We continue this process inductively, repeatedly applying Lemma 5.9, to and generate a
decreasing sequence of nonempty continua C; 2 Cy O ... O (), D ... such that for each n,
C,NF,=0. Thisgives) =~ ,C, NU; 1 F, =N2;C. N X =(),—,C,. Butthisis
impossible: the C,'s have the finite intersection property and X is compact, so (,~,C,, # 0. e

Example 5.11 By Theorem 5.10, we know that [0, 1] cannot be written as the union of m
pairwise disjoint nonempty closed sets if 1 < m < X,. And, of course, [0, 1] can easily be
written as the union of m = c such sets: for example, [0, 1] = U, ¢ {z}. Whatif

Ng<m < c?

There are other related questions you could ask yourself. For example, can [0, 1] be written as the
union of ¢ disjoint closed sets each of which is uncountable? The answer is “yes.” For example,
take a continuous onto function f : [0, 1] — [0, 1]* (a space-filling curve, whose existence you
should have seen in an advanced calculus course). For each x € [0, 1], let

L, = {x} x [0, 1] = “the vertical line segment at = in [0, 1]?. Then the sets f~![L,] do the job.

We could also ask: is it possible to write [0, 1] as the union of uncountably many pairwise
disjoint closed sets each of which is countably infinite? (See Exercise VIII.E27).
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Exercises

El. Suppose X = AU B where A — Band B — A are separated.

a) Provethatforany C C X, clx C =cly(ANC)Uclg(BNC).

b) Conclude that C' is closed if C' N A isclosed in A and C N B is closed in B.

¢) Conclude that C is openif C' N Aisopenin Aand C' N Bisopenin B.

d) Suppose X = AU B where A — B and B — A are separated. Prove that if f: X — Y and
both f|A and f|B are continuous, then f is continuous.

E2. Prove that [0, 1] is connected directly from the definition of connected.
(Use the least upper bound property of R.)

E3. Suppose both A, B are closed subsets of (X,7). Prove that A — B is separated from B — A.
Do the same assuming instead that A and B are both open.

E4. Suppose S is a connected subset of (X, 7). Provethatif SNE # @ and SN (X — E) # 0,
then S NFr E # 0.

E5. Let (X,d) and (Y,d’) be two connected metric spaces. Suppose k£ >0 and that
(a,b) e X xY. Let K ={(z,y) € X xY :d(z,a) < kand d'(y,b) < k}.

a) Give an example to show that the complement of K in X x Y might not be connected.
b) Prove that the complement of K in X x Y is connected if (X,d) and Y,d’) are
unbounded spaces.

E6. Prove that there does not exist a continuous function f: R — R such that f[P] C Q and

f1Q] € P.
Hint: One method: What do you know about ran f? What else do you know? )
Another method: if such an f exists, let g = — = and let h = g¢|[0, 1]. What do you know

T+1f]
about h?

E7. a) Find the cardinality of the collection of all compact connected subsets of R?.
b) Find the cardinality of the collection of all connected subsets of R2.

E8. Suppose (X, d) is a connected metric space with | X'| > 1. Prove that | X| > c.

E9. Suppose each point in a metric space (X, d) has a neighborhood base consisting of clopen
sets (such a metric space is sometimes called zero-dimensional). Prove that (X,d) is totally
disconnected.
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E10. A metric space (X, d) satisfies the e-chain condition if for all e > 0 and all =, y € X, there
exists a finite set of points x1, 9, ..., ,,—1, ©, Where x; = x, x,, = y, and d(z;, z;41) < € for
alli=1,..,n—1.

a) Give an example of a metric space which satisfies the e-chain condition but which is not
connected.

b) Prove that if (X, d) is connected, then (X, d) satisfies the e-chain condition.
c) Prove that if (X, d) is compact and satisfies the e-chain condition, then X is connected.

d) Prove that ({0) x [ —1,1]) U {(z,sin 1) : 0 < = < 1} C R?is connected.
(Use c) to give a different proof than the one given in Example 3.4.)

e) In any space (X, 7), a simple chain from a to b is a finite collection of sets { A4, ..., A, }
such that:

a€ Ajanda ¢ A;ifi #1
beA,andb ¢ A;ifi #n
foralli=1,...,n—1, A;NA 1 #0
ANA=0if [j—i| #1

Prove X is connected iff for every open cover U/ and every pair of points a,b € X, there is a
simple chain from « to b consisting of sets taken from /.

E11. a) Prove that X is locally connected iff the components of every open set O are also open in
X.

b) The path components of a space are its maximal path connected subsets. Show that X is
locally path connected iff the path components of every open set O are also openin X.

E12. Let 7 be the cofinite topology on N. We know that (N, 7") is not path connected (because
of Sierpinski's Theorem applied to the closed interval [0, 1]). Prove that the statement “(N,7") is
not path connected” is equivalent to “Sierpinski's Theorem for the case X = [0, 1].”

E13. Let n > 1 and suppose f : [0, 1] — R™ is a homeomorphism (into); then ran(f) is called an
arc in R™. Use a connectedness argument to prove that an arc is nowhere dense in R". Is the
same true if [0, 1] is replaced by the circle S1?
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E14. a) Prove that for any space X and n > 2,

if X has > n components, then there are nonempty pairwise separated sets H, ..., H,
for which X = HyU..UH, (*¥%)

Hints. For a given n, do not start with the components and try to group them to form the H,,'s.
Start with the fact that X is not connected. Use induction. When X has infinitely many
components, then X has > n components for every n.

b) Recall that a disconnection of X means a pair of nonempty separated sets A, B for which
X = AU B. Remember also that if C' is a component of X, C' is not necessarily “one piece in a
disconnection of X (see Example 4.4).
Prove that X has only finitely many components n (n > 2) iff X has only finitely many
disconnections.

E15. A metric space (X, d) is called locally separable if, for each = € X, there is an open set U
containing x such that (U, d) is separable. Prove that a connected, locally separable metric space
is separable.

E16. In (X, 7), define = ~ y if there does not exist a disconnection X = AU B with z € A and
y € B, i.e., if “X can't be split between = and y.” Prove that ~ is an equivalence relation and
that the equivalence class of a point p is the quasicomponent ,,. (It follows that X is the disjoint
union of its quasicomponents. )

E17. For the following alphabet (capital Arial font), decide which letters are homeomorphic to
each other:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

E18. Suppose f : R — X = {(x,y) € R?: x = 0 or y = 0} is continuous and onto. Prove that
F71{(0,0)}] contains at least 3 points.

E19. Show how to write R? = A U B where A and B are nonempty, disjoint, connected, dense
and congruent by translation (i.e., 3 (u,v) € R? such that B = {(z + u,y +v) : (z,y) € A}).

E20. Suppose X is connected and | X'| > 2. Show that X can be written as A U B where A and
B are connected proper subsets of X.

E21. Prove or disprove: a nonempty product X x Y is totally disconnected iff both X and Y are
totally disconnected.
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Chapter V Review

Explain why each statement is true, or provide a counterexample.

1. There exists a continuous function f : R — R which is onto and for which
flQ EN.

2. Let 7 be the right ray topology on R. Then (R, 7) is path connected.

3. There exists a countably infinite compact connected metric space.

4. The letter T is homeomorphic to the letter F.

5. If A and B are connected and not separated, then A U B is connected.

6. If Aand B are nonempty and A U B is connected, then cl A Ncl B # (.
7. If the graph of a function f : R — R is connected, then f is continuous.

8. N, with the cofinite topology, is connected.

9. Inaspace (X, 7), the component containing the point p is a subset of the intersection of all
clopen sets containing a point p.

10. If A, B C (X,7) and A is clopenin AU B, then X is not connected.

11. If f: (X,7) — (Y, T') is continuous and onto and (X, 7") is path connected, then (Y, 7 ')
is path connected.

12. Suppose A C R, | A| > 1. If Aisnowhere dense, then A is not connected.

13. Let C be the Cantor set. There exists a nonempty space X for which X x C'is connected.
14. Let C be the Cantor set. Then R — C? is connected.

15. If C'is a component of the complete metric space (X, d), then (C, d) is complete.

16. Let S! denote the unit circle in R2. S' is homeomorphic to a subspace of the Cantor set.

17. If X is the union of an uncountable collection of disjoint nonempty, connected closed sets
C,, then the C,'s are components of X.

18. If X is the union of a finite collection of disjoint nonempty connected closed sets C,,, then
the C,'s are components of X.

19. If X is the union of a countable collection of disjoint connected closed sets C.,, then the
C,'s are components of X.
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20. If (X, d) is connected, then its completion (35 d ) is connected.

21. If Ais connected and Bis clopenand AN B # (), then A C B.

22. Suppose f : R™ — R™ is continuous, that f((0,0,...,0)) = (0,0, ...,0) and

f((1,0,...,0)) = (2,0,...,0). Let A denote the set of all fixed points of f. Itis possible that A

is open in R™ ( Note: we are not assuming f is a contraction, so f may have more than one fixed
point.)

23. Suppose (X, d) is a connected separable metric space with | X | > 1. Then | X | =c.

24. If asubset A of R contains an open interval around each of its points, then A must be
connected.

25. There exists a connected metric space (X, d) with | X| = X,.

26. If R* D 4; D A; D ... D A, D ... isa nested sequence of connected sets in the plane, then
No,A,, is connected.

27. (P x R) U (R x IP) is a connected set in R?.

28. Let A= {(z,sin1):x >0} C R?and suppose f :cl(A)— {0,1} is continuous. Then f
must be constant.

29. Suppose X # (). X is connected if and only if there are exactly two functions f € C'(X) such
that f2 = f.

30. If X is nonempty, countable and connected, then every f € C(X) is constant.
31. Every path connected set in R? is locally path connected.

32. If B is a dense connected set in R, then B = R.

33. In a metric space (X, d) the sets A and B are separated iff d(A, B) > 0.

34. A nonempty clopen subset of a space X must be a component of X.

35. Suppose 7 and 7' are topologies on X and that 7 C 7'. If (X,7)is connected, then
(X,T) is connected.

36. The letter X is homeomorphic to the letter Y.
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