Final Examination Math 441, Fall 2004

You may use theorems from advanced calculus, such as the inverse and implicit function theorems and the rank theorem, by citation without proof.

- 1). Define the real projective space $P^n(\mathbf{R})$ (as a topological manifold) and prove that it is compact.
- 2). Prove that if f_1, \ldots, f_n are C^{∞} functions on a C^{∞} manifold M^n such that

$$df_1(p) \wedge \cdots \wedge df_n(p) \neq 0$$

at some point $p \in M$, then there exists a chart U, x about p for which $x^i = f_i$ restricted to U. Hint: consider $F = (f_1, \ldots, f_n) : M \to \mathbf{R}^n$.

- 3). Let $\theta: W \subset \mathbf{R} \times S^2 \to S^2$ be the flow of the C^{∞} vector field X(x, y, z) = (0, z, -y) on the unit sphere S^2 .
 - i). Find W.
 - ii). Find $\theta(t, (1, 0, 0))$, for every $t \in \mathbf{R}$ at which it is defined.
- 4). On \mathbb{R}^3 consider the 2-plane distribution $\mathcal{D}^{\perp} = \{\alpha\}$, where

$$\alpha = dx + zdy - xdz$$

and where x, y, z are the standard coordinates on \mathbf{R}^3 . Verify whether this distribution is involutive.

5). Let U_1 and U_2 be open subsets of the C^{∞} manifold M^n . Let k be an integer between 0 and n. The Mayer-Vietoris sequence is based on the short exact sequence of cochains

$$0 \to A^k(U_1 \cup U_2) \xrightarrow{i} A^k(U_1) \oplus A^k(U_2) \xrightarrow{j} A^k(U_1 \cap U_2) \to 0$$

Explain how j is defined and use a partition of unity to prove that it is onto.

-over-

- 6). Let $F: G \to H$ be a Lie group homomorphism between the Lie groups G and H. Let X be a left-invariant vector field on G and let Y be the left-invariant vector field on H determined by the vector $dF_{(e)}X_{(e)} \in T_eH$. Prove that Y is F-related to X.
- 7). Let S^2 be the unit sphere in \mathbf{R}^3 , let $j: S^2 \hookrightarrow \mathbf{R}^3$ be the inclusion map, and let $M^2 = \{p \in S^2 : z(p) \geq 0\}$ be the closed northern hemisphere. Let S^2 have the orientation defined by the nowhere vanishing 2-form $j^*(\iota_{(x,y,z)}dx \wedge dy \wedge dz)$, where x, y, z are the standard coordinates on \mathbf{R}^3 .
- i). State Stokes's Theorem for the 1-form $\alpha = j^*(xdy ydz)$ on M. Explain the correct orientation on the boundary of M.
 - ii). Calculate $\int_{\partial M} \alpha$, where ∂M has the induced orientation.